Exploring typhoon variability over the mid-to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki, Japan

Jonathan D. Woodruff a, *, Jeffrey P. Donnelly b, Akiko Okusu c

a Department of Geosciences, University of Massachusetts, Amherst 01003-9297, MA, USA
b Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
c Department of Biology, Simmons College, Boston, MA, USA

1. Introduction

Approximately a third of all tropical cyclones in the world form within the western North Pacific (Gray, 1968; Henderson-Sellers et al., 1998), making it the most active tropical cyclone basin on earth. However, relatively little is known about how shifts in climate alter the frequency, intensity, and tracks of typhoons in this region (here “typhoon” is used to describe tropical cyclones forming in the northwest Pacific, while “hurricane” describes tropical cyclones forming in the western North Atlantic and eastern North Pacific). Large uncertainties exist in part because reliable instrumental records for typhoons only extend back to 1945 AD (Chu et al., 2002), prohibiting the analysis of typhoon variability on timescales longer than a few decades. Significantly longer data sets for typhoon occurrences are therefore required to elucidate the dominant climatic controls of typhoon activity on the centennial-to-millennial timescales.

Natural archives of tropical cyclones can extend the documented record well beyond the observational record and help identify how tropical cyclone activity has responded to past shifts in climate (Nott, 2004; Frappier et al., 2007a). Geologic proxies for tropical cyclones include negative δ18O anomalies in speleothems and tree rings (Malmquist, 1997; Miller et al., 2006; Frappier et al., 2007b; Nott et al., 2007), storm-induced beach ridges and scarps (Nott and Hayne, 2001; Buynevich et al., 2007), cyclone-transported boulder deposits (Yu et al., 2004; Scheffers and Scheffers, 2006; Spiske et al., 2008; Suzuki et al., 2008), preserved offshore beds and bedforms (Duke, 1985; Ito et al., 2001; Keen et al., 2004; Keen et al., 2006), and sedimentary archives of freshwater flooding events (Grossman, 2001; Besonen et al., 2008). In addition, overwash deposits preserved within backbarrier beach environments can be a particularly effective proxy of long-term tropical cyclone activity.
variability (Emery, 1969; Liu and Fearn, 1993, 2000; Donnelly et al., 2001a,b, 2004; Donnelly and Webb, 2004; Donnelly, 2005; Donnelly and Woodruff, 2007; Scileppi and Donnelly, 2007; Woodruff et al., 2008b), during intervals when coastal morphology has remained fairly stable (Otros, 1999, 2002; Lambert et al., 2003; Donnelly and Giosan, 2008).

Recent compilations of millennial-scale hurricane reconstructions from the western North Atlantic indicate basin wide fluctuations in activity over the last 5000 years (Donnelly and Woodruff, 2007; Scileppi and Donnelly, 2007; Woodruff et al., 2008a). Although these reconstructions are still limited in number, stochastic simulations indicate that observed trends are statistically significant and unlikely to occur under the present climate (Woodruff et al., 2008a). Comparisons with previously developed climate proxies indicate that past increases in hurricane activity in the western North Atlantic occur during periods of less frequent El Niño events and stronger West African monsoons, suggesting that these climatic phenomena have played a significant role in modulating hurricane activity in the western North Atlantic over the mid-to-late Holocene (Donnelly and Woodruff, 2007). The El Niño/Southern Oscillation (ENSO) strongly affects tropical cyclone activity in both the western North Atlantic and the western North Pacific; however, its influence is different within the two basins. In the western North Atlantic, vertical wind shear is generally greater during El Niño years, which inhibits the formation of tropical cyclones (Gray, 1984; Goldenberg and Shapiro, 1996; Bove et al., 1998). In the western North Pacific, the overall number of tropical cyclones is less affected by ENSO (Wang and Chan, 2002); however, the mean genesis location for typhoons generally shifts to the southeast during El Niño years (Chan, 1985; Lander, 1994). This shift results in longer lasting typhoons (Wang and Chan, 2002), which generally become more intense (Camargo and Sobel, 2005; Chan, 2007). In addition, typhoons during El Niño years tend to recurve to the northeast (Wang and Chan, 2002), which may increase the likelihood of typhoon making landfall in Japan and South Korea (Elsner and Liu, 2003).

In comparison to the western North Atlantic, centennial-to-millennial scale typhoon reconstructions from the western North Pacific are far more limited. Historical government documents of typhoon landfalls from the Guangdong Province in Southern China extend back 1000 years, although complete records for typhoon strikes to the region are likely only reliable back to 1600 AD (Lee and Moon, 1998; Nakajima et al., 2004a,b, 2005; Donnelly and Woodruff, 2007; Scileppi and Donnelly, 2007; Woodruff et al., 2001a,b, 2004; Donnelly, 2005; Donnelly and Webb, 2004; Donnelly, 2005; Donnelly and Woodruff, 2007; Scileppi and Donnelly, 2007; Woodruff et al., 2008b), during intervals when coastal morphology has remained fairly stable (Otros, 1999, 2002; Lambert et al., 2003; Donnelly and Giosan, 2008).

In the western North Pacific, the overall number of tropical cyclones (Gray, 1984; Goldenberg and Shapiro, 1996; Bove et al., 1998) is significantly greater during El Niño years, which inhibits the formation of tropical cyclones (Gray, 1984; Goldenberg and Shapiro, 1996; Bove et al., 1998). In the western North Pacific, the overall number of tropical cyclones is less affected by ENSO (Wang and Chan, 2002); however, the mean genesis location for typhoons generally shifts to the southeast during El Niño years (Chan, 1985; Lander, 1994). This shift results in longer lasting typhoons (Wang and Chan, 2002), which generally become more intense (Camargo and Sobel, 2005; Chan, 2007). In addition, typhoons during El Niño years tend to recurve to the northeast (Wang and Chan, 2002), which may increase the likelihood of typhoon making landfall in Japan and South Korea (Elsner and Liu, 2003).

In comparison to the western North Atlantic, centennial-to-millennial scale typhoon reconstructions from the western North Pacific are far more limited. Historical government documents of typhoon landfalls from the Guangdong Province in Southern China extend back 1000 years, although complete records for typhoon strikes to the region are likely only reliable back to 1600 AD (Lee and Hsu, 1989; Qiao and Tang, 1993; Chan and Shi, 2000; Liu et al., 2001). Arakawa et al. (1961) have also put together an assemblage of historical documents describing typhoon occurrences in Japan between 701 AD and 1865 AD. Recent efforts are also underway to compile additional Japanese records for typhoon occurrences in Japan (e.g. Grossman and Zaiki, 2007). Paleo-typhoon reconstructions have also been constructed from boulder and atoll deposits (Zhu et al., 1991; Yu et al., 2004), but to date no-millennial-scale typhoon records exist in regions other than the South China Sea.

Long-term reconstructions of typhoon variability from southern Japan may help to identify the dominant processes controlling typhoon activity in the western North Pacific on timescales greater than annual-to-decadal. Towards this end we examine the mid-to-late Holocene development of two backbarrier lagoons on the island of Kamikoshiki, Japan, and assess the depositional response of each lake to typhoon-induced breaches in the coastal barrier.

2. Study area

The small island of Kamikoshiki (~60 km²) is situated approximately 30 km to the west of the southern Kyushu, and is the northern most island of the Koshiki-jima archipelago (Fig. 1). Locally nicknamed “Typhoon Ginza” after one of Tokyo’s most popular shopping district, the island is frequently struck by typhoons. According to the “best track” data set for the western North Pacific, as many as 25 typhoons have passed within 75 km of Kamikoshiki since the beginning of the compilation in 1945 AD (Chu et al., 2002).

The coastline of Kamikoshiki is flanked by large lagoon systems formed by drowned coastal valleys cutoff from the sea by a long gravel bar called Nagame-no-Hama (Aramaki et al., 1969). Lake Namakoike and Lake Kaiike are the deepest of Kamikoshiki’s coastal lagoons (Fig. 1), with respective surface areas of 0.5 km² and 0.15 km², and respective maximum depths of 21 m and 10.7 m (Matsuyama, 1977).

Lake Kaiike exhibits a significant chemocline at roughly 2.5 m and remains stratified throughout the year (Matsuyama, 1977; Nakajima et al., 2003). Anoxic bottom waters within the lake prevent bioturbation, and result in well-preserved, fine-scale (<1 mm) sedimentary stratigraphy (Oguri et al., 2002). Modern sedimentation rates in the lake based on Pb-210 analyses are approximately 2.3 mm yr⁻¹ (Kotani et al., 2001), which suggest that sub-millimeter laminations represent depositional processes occurring on the annual-to-subannual timescales. Microscopic observations (Oguri et al., 2002, 2003a) indicate that micro-laminations are constructed of higher density, diatom-rich layers (Kashima, 1989; Kubo et al., 1999), interbedded with lower density lamina of bacterial species which populate the lake’s bottom and chemocline (Matsuyama and Shirouzu, 1978; Matsuyama and Moon, 1998; Nakajima et al., 2003; Koizumi et al., 2004a,b, 2005; Matsuyama, 2004; Oguri et al., 2004). These previous studies have focused primarily on the upper few centimeters of Lake Kaiike sediment. Less work has been conducted on the lake’s long-term depositional history, although sub-bottom seismic profiling using a Uni-boom system reveal over 20 m of sediment accumulation (Oguri et al., 2002).

Lake Namakoike exhibits less water-column stratification than Lake Kaiike (Matsuyama, 1977); however, recent measurements suggest near meromictic conditions in its deepest reaches, with anoxic sediments similar to Kaiike (Takishita et al., 2007). Both Lakes Kaiike and Namakoike have fairly small watersheds, with respective catchments of 0.17 km² and 0.15 km² (Matsuyama, 1977). The local tidal range at the site is approximately 2 m, but modern tidal flow into both lakes is restricted to seawater seeping through the gravel barrier, resulting in a damped tidal range of roughly 0.2 m (Aramaki et al., 1969). Heavy precipitation can also increase water levels in Lake Kaiike to the point that no tidal variation is observed, and flow is continuous into Lake Namakoike through a small channel which connects the two lakes (Matsuyama, 1977).

The region surrounding Kamikoshiki is fairly stable tectonically with few active faults in the area (National Astronomical Observatory, 1992; Yokoyama et al., 1996; Taira, 2001). Relative sea-level (RSL) observations for coastal regions of Kyushu are numerous (e.g. Moriwaki et al., 1986, 2002; Chida, 1987; Nagaoka et al., 1991, 1995, 1997a,b; Shimoyama et al., 1991; Nakada et al., 1994; Shimoyama, 1994; Ohira, 2005), with observations from southwestern Kyushu (Nagaoka et al., 1996; Yokoyama et al., 1996) exhibiting little evidence for tectonic activity over the mid-to-late Holocene. Quantitative glacial-isostatic modeling results (Nakada et al., 1991) are consistent with mid-Holocene RSL reconstructions from western Kyushu (Fig. 2), and support sea-level at the Kamikoshiki study area remaining fairly stable over the last 6000 years, with the site roughly situated on the nodal point for isostatic adjustment (Fig. 2).

The 2–4 m high gravel bar (Nagame-no-hama) that separates Namakoike and Kaiike from the sea is continuous with no tidal inlets. However, during Typhoon Ruth in 1951 AD, an inlet was opened into the barrier at the north end of Lake Namakoike. The
1951 AD inlet was later repaired with a presently standing concrete seawall (Fig. 1; Matsuyama, 1981). Thus, Typhoon Ruth was the last event to occur at the site without known human fortifications of the Nagame-no-hama barrier.

3. Material and methods

To assess the long-term depositional history for Lake Kaiike and Lake Namakoike we obtained high-resolution sub-bottom seismic data, sediment cores, and geochronologies from both lakes. Sub-bottom seismic surveys were collected in 2006 using an EdgeTech SB-424 chirp seismic system with a 4–24 kHz pulse bandwidth. A uniform sound speed of 1500 m/s was used to convert travel time to depth. Bottom penetration by the chirp unit was sufficient to image the entire stratigraphic sequence of both lakes (w10–20 m) with a vertical resolution of roughly 10 cm. Coring locations were targeted where seismic profiles revealed the longest and most complete depositional sequence from each sedimentary basin. Geographic positions for chirp survey lines and coring sites were obtained using a handheld GPS unit, which provided horizontal accuracies of 3–6 m.

Sediment cores were collected using a piston push core system with 5 cm diameter polycarbonate and aluminum barrels (Colinvaux et al., 1999). Cores were collected in 2–3 m drives with 20–30 cm of sediment overlap. Consecutive drives were obtained from alternating sides of the coring platform to prevent sediment disruption at depths where drives overlapped. Additional handheld gravity cores were collected to obtain surface samples with a well-preserved sediment/water interface.

Sediment cores were shipped to the Woods Hole Oceanographic Institution (WHOI) where they were refrigerated at 4 °C prior to being split, described and photographed. Select core halves were run through a non-destructive, X-ray fluorescence core scanner (XRF) to obtain a high-resolution down-core profile (≤1 mm) of the sediment’s elemental composition (Croudace et al., 2006), as well as relative density measurements using digital X-ray radiography. Discrete surface samples collected from the watershed and barrier beach were also run through the XRF to identify the elemental composition of allochthonous material in both lakes. All samples were run with a 3 kW Molybdenum (Mo) target tube with a 10 s exposure time. In this study we focus on XRF results for Strontium (Sr), which has a good response for excitation in sediment using a Mo target (Thomson et al., 2006), and is found in high concentrations within the marine-sourced shell, coral and algal material often advected into lagoons during overwash events (Bowen, 1956; Woodruff, 2008). Coarse fractions were determined by measuring the weight of dry sand in samples relative to the weight of bulk material, where sands were isolated using a 63 μm sieve after treatment with hydrogen peroxide to remove organics.

Modern sediment chronologies were obtained for surface cores by gamma spectrometry. Measurements for 137Cs (a product of atmospheric nuclear weapons testing) were gathered non-destructively using a high-resolution gamma detector. This anthropogenic radionuclide has been released to the environment predominantly since the early 1950s, the beginning of atmospheric nuclear weapons testing, with fallout reaching a maximum in 1963 AD (Ritchie and McHenry, 1990; Frignani and Langone, 1991). However, the onset of local 137Cs flux to the site could potentially begin as early as 1945 AD due to the WWII atomic bombing of nearby Nagasaki, Japan, located approximately 100 km north of the site (Kudo et al., 1991; Saito-Kokubu et al., 2008). For radioisotope analysis, approximately 2.0 g of powdered sediment samples were placed in 2.54 cm diameter plastic jars and counted on a Canberra GCW4023S coaxial germanium well detector for 24–48 h. Activities for 137Cs were computed spectroscopically from the 661.7 keV photopeak.

Centennial-to-millennial scale chronologies were constrained by Accelerator Mass Spectrometry (AMS) 14C dates of plant material. Samples were gently washed with distilled water, sonicated, dried, and dated at the National Ocean Science Accelerator Mass
4. Results

4.1. Seismic data

Chirp surveys of Lake Namakoike and Lake Kaiike reveal similar sub-bottom stratigraphy. Both lakes contain approximately 10–15 m of acoustically laminated sediment lying over a reflective bedrock surface (Fig. 3). Lake Namakoike exhibits multiple subaqueous bedrock ridges that partition the lake into at least four separate submerged basins. Similar top sediments within Namai-koike depocenters consist of acoustically laminated, parallel to subparallel seismic reflectors that are generally thickest in the middle of each basin and convergent along the edges of adjacent bedrock ridges (Fig. 3).

A mainly depositional sequence within the upper-most sedimentary unit (Unit 1) drapes an erosional incision at a sediment depth of approximately 3–4 m (Fig. 3). Stratigraphic signatures of substantial erosion are evident below this contact surface, and include truncated stratigraphy and cut/fill features. The northern most basin surveyed in Namakoike (Basin-NA, located directly next to the Nagame-no-hama seawall), contains truncated unconformities at the base of Unit 1, which suggest downcutting of at least 1–2 m (Fig. 3). The truncated strata below Unit 1 at the Nagame-no-hama seawall provide evidence for additional barrier openings prior to Typhoon Ruth in 1951 AD, and suggest that this stretch of the barrier is a hotspot for breaching. In comparison, Basin-NB (located just to the south of Basin-NA, Fig. 3) contains less evidence of channel incisions and/or sediment redistribution. Preservation of strata within Basin-NB may be due to the submerged ridge separating it from Basin-NA, which provides some shelter against erosion when the barrier is compromised along the more vulnerable stretch of coast adjacent to Basin-NA.

Chirp surveys from Lake Kaiike are similar to those collected from Lake Namakoike, exhibiting a top unit of parallel laminations (Unit 1), draped over a lower unit with truncated reflectors and more complicated stratigraphy (Fig. 3). These observations are also consistent with previous Uni-boom data collected from Kaiike (Oguri et al., 2003b) that identified an acoustically conductive 2–3 m thick top unit, overlying a second unit with slightly higher levels of acoustical impedance.

4.2. Sedimentology

The parallel and undisturbed stratigraphy in Unit 1 suggests a fairly complete sedimentary sequence within this upper unit (Fig. 3). In addition, Basin-NB appears to contain the most expanded record for Unit 1, with the least evidence for sediment disruption along the erosional contact at its base. Based on these stratigraphic observations we focus our initial sedimentological analyses on NK15, a 5.5 m core collected from the middle of Basin-NB (core location identified in Figs. 1 and 3).

NK15 is primarily composed of organic-rich, finely laminated mud, intercalated with coarser grained deposits. Depth profiles of percent coarse and X-ray gray-scale density indicate that the depths for coarse beds are concurrent with prominent seismic reflectors (Fig. 4). In particular, the deposit concomitant with the erosional surface at the base of Unit 1 is distinct, containing the highest sand content observed in NK15 (~50%). Coarse deposits generally consist of rounded sand-to-pebble sized siliciclastic grains, interspersed with calcium carbonate shells and shell fragments. These coarse beds are low in organic material, and well mixed, with an absence of internal, fine-scale laminations. In comparison, deposits of lower acoustical impedance situated between coarser grained deposits are 10–30 times finer grained, with preserved fine-scale laminae (~1 mm), and contain considerably more organic detritus.

Concentrations of Sr are approximately 4 times larger for discrete sandy surface samples collected along the subaerial portions of the Nagame-no-hama barrier (2075 ± 950 int. peak area, 2σ) compared to the coarse subaerial sediment samples collected from the watershed and small tributaries which feed Lake Namakoike and Lake Kaiike (500 ± 120 int. peak area, 2σ). The coarse, rounded, siliciclastic grains within NK15 deposits and high Sr concentrations within these sediments are therefore both characteristic of reworked sand and shell material derived from the site’s barrier beach, rather than coarse sediment carried into the lagoon from the watershed during high runoff events (Fig. 4). Higher-resolution analyses of the upper 50 cm of NK15 also show similar trends, with smaller peaks in percent coarse correlated to more subtle increases in Sr (Fig. 5). Sediments low in Sr are generally finer grained with sub-millimeter laminations (Figs. 4 and 5). These characteristics suggest that this finely laminated sediment is deposited under quiescent conditions associated with a highly stratified water column, anoxic bottom waters, and low bioturbation.

4.3. Geochronology

The 1963 AD 137Cs peak in NK15 occurs at roughly 10 cm (Fig. 5), indicating sedimentation rates of roughly 2.3 mm yr$^{-1}$ since 1963 AD. This 137Cs peak also occurs just above the most recent deposit in NK15, between 12 and 16 cm (Fig. 5) suggesting that this coarser layer was deposited in the 1950s, and likely by the typhoon breach to the Nagame-no-hama barrier in 1951 AD.
Radiocarbon ages in both cores increase monotonically with sediment depth indicating fairly steady long-term sedimentation rates in both cores, with the exception of a ~1500 year step-function increase in age at roughly 420 cm in NKI5 (Fig. 6 and Table 1). The depth of this hiatus is at the base of Unit 1 (Fig. 4), and is consistent with truncated strata indicating downcutting of sediment below this layer (Fig. 3). An additional step-function increase in age may also occur between 212 and 259 cm in NKI5 (Fig. 6). However, evidence for erosion is less apparent in the seismic profiles between these two depths (Fig. 4).

In general, sedimentation rates are slightly lower in KI2 than in NKI5 (Fig. 6). This is consistent with chirp surveys indicating a slightly more condensed stratigraphy in Lake Kaiike relative to Basin-NB in Namakoike (Fig. 3). The sedimentation rates for both cores increase towards the modern, and become roughly equal at approximately 400 yr BP (Fig. 6). These results are also consistent with the 137Cs measurements for NKI5, and 210Pb analyses of sediment collected near KI2 (Kotani et al., 2001), both of which show sedimentation rates of approximately 2.3 mm yr$^{-1}$ for historical sediments.

Sedimentological analyses of NKI5 and discrete surface samples collected from the Nagame-no-hama barrier indicate Sr as a reasonable indicator of seaward-sourced, coarse-grained material. The timing of Sr peaks is also similar in NKI5 and KI2, suggesting that both lakes have experienced congruent periods of marine inundation (Fig. 7). For instance, deposits high in Sr are evident at both sites between approximately 3600 and 2500 yr BP. Following this period, an interval of lower Sr levels indicates more quiescent conditions within both lakes. Evidence for another active period for marine influence begins at roughly 1000 yr BP, and generally lower Sr concentrations are evident in both lakes between about 300 yr BP (1650 AD) and present.

5. Discussion

5.1. Barrier morphodynamics

The temporal correlation between deposits in lakes Namakoike and Kaiike indicates coherence between the two systems (Fig. 7), either by exchange through the small channel which connects them or by multiple concurrent breaches through the Nagame-no-hama barrier. Seismic data collected next to the small channel connecting the two lakes did not show any evidence of substantial incision into the bedrock ridge partitioning the two systems, an indication that the channel has never been significantly deeper than its current depth of less than 1 m. On the basis of these seismic observations it appears unlikely that flow through the channel was great enough to produce the erosional stratigraphy observed in both lakes (Fig. 3). The concurrent marine deposits observed in Lake Kaiike and Lake Namakoike are therefore likely due to multiple breaches through the Nagame-no-hama barrier during roughly the same time interval.

The preserved, finely laminated sediments at the base of core NKI5 dating to between 6200 and 5100 yr BP likely indicate stratified, anoxic bottom waters in Namakoike during this interval, thus preventing bioturbation (Fig. 7). This is with the exception of
a minor disruption in laminae at \(\sim 470 \) cm or \(\sim 5500 \) yr BP. The barrier adjacent to Namakoike was therefore likely subaerial by \(\sim 6200 \) yr BP (Fig. 7), since the barrier shelters the lake from waves, and the mixing of fresh, oxygenated seawater down to the bottom of the basin.

Comparing Sr depth profiles for cores NKI5 and KI2 shows that concentrations of Sr are generally lower in KI2 than in NKI5 (Fig. 7), a pattern consistent with the slightly more sheltered location of Lake Kaiike within the northern embayment of Kamikoshiki (Fig. 1). The coarse deposits intercalated within the finely laminated sediments of Kaiike and Namakoiike show a gradual decrease in both Sr concentrations and grain-size up-core (Figs. 4 and 7). These reductions may indicate that periods of inundation over the Nagame-no-hama barrier have become less severe through time, a result consistent with initial descriptions for the gradual development of the barrier over the last few millennia (Aramaki et al., 1969).

It is possible that the Nagame-no-hama barrier formed with the emergence of an ancient submerged bar, in response to a general fall in relative sea-level following a mid-Holocene highstand (Aramaki et al., 1969). Most coastal regions of Japan show evidence for sea levels several meters above present day during an interval ranging between roughly 6500 and 5000 yr BP (e.g. Ota and Machida, 1987), examples include; locations along the eastern coast of Hokkaido (Maeda et al., 1992; Sawai, 2001), at the southern Boso Peninsula and along Sagami Bay (Nakata et al., 1980; Endo et al., 1982; Kumaki, 1985), in coastal regions of western Kobe (Sato et al., 2001), and along the Ryuku Island of Kikai-jima (Webster et al., 1998; Sugihara et al., 2003). However, regional glacial-isostatic modeling results (Nakada et al., 1991, 1994) and RSL reconstructions (Nagaoka et al., 1996; Yokoyama et al., 1996) from the more tectonically stable areas of western Kyushu (Taira, 2001).
provide evidence that sea-level has remained fairly constant at Kamikoshiki over the last 6000 years (Fig. 2). If this is the case, the decrease in both grain-size and Sr within successive deposits in both NKI5 and KI2 indicates that under steady sea-level conditions the barrier has gradually become less susceptible to inundation, likely becoming more fortified through time by mechanisms other than changes in relative sea-level (e.g. longshore transport, Hine, 1979, overwash and backbarrier deposition, Morton, 2002, and/or vegetative growth, Snyder and Boss, 2002).

The multiple deposits in both NKI5 and KI2 strongly suggest that the barrier has been breached numerous times over the last 6400 years, with finely laminated sediments between these deposits indicating that each of these breaches has closed naturally following the event. Several peaks in both Sr and grain-size are also observed within unlaminated coarser grained units (Figs. 4 and 7), which may suggest deposition by multiple events. The barrier is likely more susceptible to overwash after an initial breach and following vegetative disruption (White, 1979; Morton and Paine, 1985; Morris et al., 2001; Stockdon et al., 2007). Successive severe flooding events therefore may serve to maintain the breach opening over time. It is unclear what stimulates the refortification of the barrier and the restoration of meromictic conditions in both lakes. While some overwash by smaller flooding events is necessary to elevate subaerial portions of the barrier (Stone et al., 2004), it is likely that inlet closure occurs in general during periods of less extreme flooding, which would allow reestablishment of the Nagame-no-hama barrier without severe and repetitive disruptions.

5.2. Deposit origins

Both tropical cyclones and tsunamis have the ability to inundate barrier beach systems and produce coarse deposits comparable to those observed at the site. Well-documented tsunami deposits are evident along the Japanese coast. However, these deposits are primarily observed to the north of Kamikoshiki and closer to subduction/collision plate boundaries; e.g. along the Pacific Ocean facing shorelines of Hokkaido (Sawai, 2002; Nanayama et al., 2003, 2007), Honshu (Fujiwara and Kamataki, 2007; Komatsubara and Fujiwara, 2007; Sawai et al., 2008) and Shikoku (Okamura et al., 2007), Honshu (Fujiwara and Kamataki, 2007; Komatsubara and Fujiwara, 2007; Sawai et al., 2008) and Shikoku (Okamura et al., 2007), as well as some coastal regions in the Japan Sea (e.g. Nanayama and Shigeno, 2006). Evidence for tsunamis are less prevalent along the more tectonically stable regions of western Kyushu. This is with the exception of documented tsunamis in Ariake Bay near Nagasaki and along the north side of Kagoshima Bay, where significant wave runup were constrained predominantly to the local embayments near the point of initiation (Watanabe, 1998).

Another seismically active region of Japan with tsunami potential is located to the south of the site along the Ryukyu Trench (Taira, 2001). On April 24, 1771 AD, a very large tsunami struck the Ryukyu Islands, located approximately 1000 km to the south of Kamikoshiki. Large coral boulders located at the eastern shore of the Ryukyu Islands have been attributed to this event (Kawana and Nakata, 1994). However, recent work by Suzuki et al. (2008) shows a fairly wide range of 14C ages for the timing of transport of these boulders. In addition, oxygen isotope micro-profiling and skeletal growth patterns reveal that these coral blocks were likely dislodged and transported primarily during the tropical cyclone season, and not in the spring during the 1771 AD tsunami.

Tsunamis cannot be explicitly ruled out as a cause for the deposits observed in Namakoike and Kaikike. However, only one minor tsunami events has been documented on the island since 1945 AD (Japan Meteorological Agency, 2007; National Geophysical Data Center, 2009), compared to the 25 typhoons which have passed within 75 km of Kamikoshiki during this interval (Chu et al.,

Table 1

Kamikoshiki radiocarbon dates and calibrated ages (1 sigma range) in calendar years Before Present (yr BP) using IntCal04 (Reimer et al., 2004), where 1950 AD is defined as “Present” by convention.

<table>
<thead>
<tr>
<th>Index number</th>
<th>Lab number</th>
<th>Core</th>
<th>Depth (cm)</th>
<th>14C age Cal yr BP (1 s)</th>
<th>δ13C (%o)</th>
<th>Material dated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OS-62015</td>
<td>NKI5</td>
<td>118–119</td>
<td>410 ± 25</td>
<td>(473–507)</td>
<td>–26.64 Leaf</td>
</tr>
<tr>
<td>2</td>
<td>OS-57839</td>
<td>NKI5</td>
<td>146–147</td>
<td>820 ± 30</td>
<td>(690–756)</td>
<td>–28.7 Leaf</td>
</tr>
<tr>
<td>3</td>
<td>OS-62101</td>
<td>NKI5</td>
<td>211–213</td>
<td>1290 ± 30</td>
<td>(1182–1277)</td>
<td>–28.52 Leaf</td>
</tr>
<tr>
<td>4</td>
<td>OS-57952</td>
<td>NKI5</td>
<td>238–259</td>
<td>2330 ± 100</td>
<td>(2156–2675)</td>
<td>–26.27 Woody debris</td>
</tr>
<tr>
<td>5</td>
<td>OS-57888</td>
<td>NKI5</td>
<td>344–345</td>
<td>2850 ± 40</td>
<td>(2881–3058)</td>
<td>–25.88 Woody debris</td>
</tr>
<tr>
<td>6</td>
<td>OS-67805</td>
<td>NKI5</td>
<td>388–389</td>
<td>3100 ± 35</td>
<td>(3266–3371)</td>
<td>–28.74 Leaf</td>
</tr>
<tr>
<td>7</td>
<td>OS-62016</td>
<td>NKI5</td>
<td>423–425</td>
<td>4450 ± 30</td>
<td>(4794–5267)</td>
<td>–27.79 Woody debris</td>
</tr>
<tr>
<td>8</td>
<td>OS-57912</td>
<td>NKI5</td>
<td>547–548</td>
<td>5390 ± 30</td>
<td>(6185–6274)</td>
<td>–26.86 Woody debris</td>
</tr>
<tr>
<td>9</td>
<td>OS-61946</td>
<td>KI2</td>
<td>56–57</td>
<td>270 ± 35</td>
<td>(157–426)</td>
<td>–30.67 Leaf</td>
</tr>
<tr>
<td>10</td>
<td>OS-57911</td>
<td>KI2</td>
<td>115–16</td>
<td>980 ± 30</td>
<td>(802–932)</td>
<td>–26.78 Woody debris</td>
</tr>
<tr>
<td>11</td>
<td>OS-62217</td>
<td>KI2</td>
<td>134–135</td>
<td>1090 ± 30</td>
<td>(961–1052)</td>
<td>–28.52 Leaf</td>
</tr>
<tr>
<td>12</td>
<td>OS-62111</td>
<td>KI2</td>
<td>223–224</td>
<td>2210 ± 25</td>
<td>(2156–2307)</td>
<td>–29.96 Bark</td>
</tr>
<tr>
<td>13</td>
<td>OS-57782</td>
<td>KI2</td>
<td>291–292</td>
<td>2890 ± 30</td>
<td>(2969–3067)</td>
<td>–29.06 Twig</td>
</tr>
<tr>
<td>14</td>
<td>OS-57889</td>
<td>KI2</td>
<td>392–392</td>
<td>3860 ± 30</td>
<td>(4193–4405)</td>
<td>–28.31 Woody debris</td>
</tr>
</tbody>
</table>

Fig. 7. Sr peak integrated area for cores NKI5 (black) and KI2 (gray) (See Fig. 1 for locations). Thicker vertical black and gray lines to the right and left of the figure indicate intervals with fine-scale (<1 mm) laminations for core NKI5 and KI2, respectively. Solid arrows represent the depth of radiocarbon-dated samples from each core. Thin dashed lines indicate depth of equal age between cores based on the age model presented in Fig. 6.
Comparisons between the Kamikoshiki and Pallacocha records show a general correlation between periods of increased El Niño occurrence and periods of more typhoon-induced deposition at the study site (Fig. 8). For example, marine deposits in Namakoike and Kaire between 300–1000 yr BP, 2500–3600 yr BP, and 4300–4800 yr BP are roughly concurrent with periods of more El Niño activity. In contrast, laminated terrigenous sediments which likely reflect more quiescence conditions in both lakes (present–300 yr BP, 1200–2200 yr BP, 3600–4300 yr BP, and 5200–6400 yr BP) occur generally during intervals of less El Niño activity. Therefore, similar to some studies using instrumental and historical observations (Wang and Chan, 2002; Elsner and Liu, 2003; Fogarty et al., 2006), the millennial-scale reconstructions from both Namakoike and Kaire support a pattern of more typhoon strikes to southern Japan during El Niño years.

5.4. Comparison with global and regional tropical cyclone reconstructions

On average, approximately 90 tropical storms develop each year globally (Henderson-Sellers et al., 1998; Emanuel, 2006). This number is remarkably stable with a standard deviation of only about 10, compared to local regional variations in tropical storm counts which are typically 100% of the long-term mean (Henderson-Sellers et al., 1998). It is currently unclear why the total number of tropical storms occurring globally remains fairly stable while regional variations are so high (Emanuel, 2006), or whether this relationship existed prior to the satellite era.

Tropical cyclone reconstructions from the western North Atlantic suggest significant hurricane variability on the centennial- to millennial timescales (Donnelly and Woodruff, 2007; Scollo and Donnelly, 2007; Woodruff et al., 2008a). Comparisons between the Kamikoshiki typhoon reconstruction and these hurricane proxy records suggest an inverse relationship. For instance, overwash trends within the Laguna Playa Grande reconstruction from Vieques, Puerto Rico are similar to additional reconstructions from the western North Atlantic and likely represent basin wide variations in hurricane activity (Donnelly and Woodruff, 2007; Woodruff et al., 2008a). Increased overwash activity observed in Namakoike and Kaire between roughly 3600–2500 yr BP, and 1000–300 yr BP generally occurs during periods of less overwash activity at Laguna Playa Grande (Fig. 8). In contrast, the quiescence conditions in both the Kamikoshiki lakes between roughly 300 yr BP to present, 2500–1000 yr BP and 3600–4300 yr BP are concurrent with periods of increased hurricane overwash at Laguna Playa Grande.

The inverse correlation between tropical cyclone reconstructions from the western North Atlantic and Kamikoshiki may indicate an oscillating pattern in tropical cyclone activity between the western North Atlantic and western North Pacific on the centennial- to millennial timescales, although on shorter timescales this relationship is less apparent (e.g. Wang and Chan, 2002). The scarcity of millennial scale typhoon reconstructions also makes it difficult to determine whether trends in the Kamikoshiki records reflect basin wide variations in activity or regional shifts in the preferred paths for typhoons.

Observations since 1945 AD suggest ENSO may drive a seesaw pattern in typhoon activity in the western North Pacific, with a general steering of typhoons towards southern Japan during El Niño years and southern China during La Niña years (Chan, 1985). Documented typhoon landfalls to the Guangdong Providence also exhibit an inverse correlation to ENSO over the last few centuries, with a decrease in typhoon occurrences to the Guangdong Providence during strong El Niño years and an increase during strong La Niña years (Elsner and Liu, 2003). Guangdong typhoon and ENSO proxy records were not compared prior to 1600 AD because of
a rapid drop in the number of documented typhoon landfalls preceding this date. It is likely that this decrease in typhoon counts is largely an artifact of the undercounting of events within the earlier part of the Guangdong record. However, an additional drop in typhoon landfalls is also observed within the more reliable part of the reconstruction between 1600 and 1650 AD (Fig. 9). Rates of typhoon occurrences following 1650 AD (or 300 yr BP) rise to some of the highest values in the Guangdong reconstruction. This transition to more documented typhoon activity in Guangdong at ~300 yr BP is concurrent with the most recent drop in Sr concentrations within NKI5 (Fig. 9). A subtler decrease in Sr at this time is also evident in KI2. The concurrent transition to more quiescent conditions in both Namakoike and Kaike during the rapid increases in Guangdong typhoon counts at 300 yr BP may suggest an oscillation in tropical cyclone activity between southern China and southern Japan, an observation consistent with ENSO-driven variability in typhoon tracks.

5.5. Comparison with historical record of Japanese typhoons

Historical accounts from Kamikoshiki Island, although incomplete, begin in 769 AD (Shoku-Nihongi, 797) and include the description of a series of devastating typhoon strikes to the island between 1883 AD and 1886 AD (Inomoto, 1999). Following these events most residents emigrated from Kamikoshiki due to crop destruction and the termination of ferry service to and from the island. The timing for the event layer at 35 cm in NKI5 is slightly older than 1883 AD (Fig. 5, assuming a steady sedimentation rate derived from the 1963 AD 137Cs peak), but may still be associated with the 1883–1886 AD typhoons given the margin of error in extrapolating recent 137Cs sedimentation rates to older sediments.

In addition to the more recent 1883–1886 AD events, two famous typhoons also made landfall to the north of Kamikoshiki at the end of the 13th century. These timely storms are cited as historically significant in Japanese records and may be indicative of increased ENSO-driven variability in tropical cyclone activity in the region during this period.
contributing to the failed Mongol invasions in 1274 AD and 1281 AD, with respective armadas including 30,000 and 140,000 men (Hall, 1971). Temples and shrines at the time famously identified these tropical cyclones as “divine wind” or kamikaze, signifying their importance in maintaining Japanese sovereignty (Emanuel, 2005). Detailed observations are limited for these two early typhoons; however, it is likely that they passed just to the east of the study site before making landfall approximately 200 km to the north along the Kyushu mainland (Hall, 1971). A rather large Sr peak in NK15 dates to approximately 1300 AD (Fig. 9), and is roughly concurrent with the timing for the Kamikaze typhoons (given 14C dating uncertainties). A similar Sr spike is not evident in NK2 (Fig. 9). Therefore, more detailed chronologies from additional Kamikoshiki sediments are required in order to verify the 1300 AD deposit. Nonetheless, the two Kamikaze storms do appear to have occurred during a period with more frequent marine-sourced deposition at the site (Fig. 9).

6. Conclusions

We provide a 6400-year record of episodic coastal flooding using sediment deposits from two coastal lakes located on the remote island of Kamikoshiki in southwestern Japan. The timing of marine-flood deposits is replicated in both lakes and provides evidence for multiple coastline breaches into the two basins during periods of frequent marine inundation. Preservation of laminated sediments between marine-flood deposits indicates similar quiescent intervals in both lakes, likely due to a lack of overwash events. A deposit dating to the mid-20th century is consistent with a documented breach to the barrier during a typhoon in 1951 AD. This modern analog, in combination with the high frequency of typhoon strikes to the site and the absence of significant historic tsunamis, lead us to conclude that marine-flood deposits are likely the result of tropical cyclones. Active breaching intervals at Kamikoshiki are concurrent with: (1) periods of more frequent El Niño events, and (2) periods of lower hurricane activity in the western North Atlantic. This pattern is consistent with instrumental observations which indicate that during El Niño years more typhoons are steered towards Japan, while hurricane activity is generally suppressed in the western North Atlantic.

Decreases in marine-sourced deposition at Kamikoshiki starting around 6000 yr BP and continuing during a transition to more documented typhoon strikes in the Guangdong Province of southern China, a pattern that is consistent with potential centennial-to-millennial scale changes in the preferred tracks for typhoons in response to ENSO variability. Failed Mongol invasions of Japan during the late 13th century occur during a period of more frequent marine-sourced deposition at the site, which may indicate that the invasions took place during a period of greater typhoon activity for southern Japan.

Acknowledgements

The authors would like to specially thank M. Okusu, F. Woodruff, and J.W. Woodruff who helped conduct the field work for this study. We are also grateful to K. Oguri, S. Hirano, K. Kashima, and F. Nanayama for providing valuable insight and a compilation of background literature. M. Gomes, R. Sorell and J. Tierney assisted with laboratory analyses, and D. Lizarralde and K. Straub aided in the processing of siesmic data. C. Saenger, R. Geyer, D. Mohrig, D. Oppo, and P. Lane provided thoughtful comments on the manuscript, and H. Okusu helped with the translation of Japanese documents. The study was supported by the Coastal Ocean Institute (COI) and the Ocean and Climate Change Institute (OCCI) at Woods Hole Oceanographic Institute. This article benefited through constructive reviews by two anonymous referees. We dedicate this paper to the memory of Makoto Ohkusu.

References

