Infrastructure is best surveyed from the air – and in infrared!

by Ryan Wicks

At the UMass Amherst campus we regularly use UAS to conduct surveys of key infrastructure; whether it be to monitor and document stages of new construction on campus or to survey and inspect existing infrastructure. One of our more recent additions to our array of capabilities is the capacity to develop thermal orthomosaics from long-wave infrared (LWIR) imagery. This can help us map heat sources and thermodynamic processes of buried infrastructure, or look at heat loss in structures.

Fig. 1 – Example LWIR Thermal Image: In this LWIR thermal image temperature is represented in a linear white-hot grayscale; that is to say that black in the image represents the lowest apparent temperature (-12.5 degrees Celsius as indicated in the scale on the right of the image) and white represents the highest apparent temperature (5.5 degrees Celsius as indicated in the scale on the right of the image), and temperatures inside this range are represented with varying shades of gray that are assigned in a linear fashion. The temperatures are only “apparent” because other factors besides temperature can effect the emitted radiation that the camera detects, such as the varying emissivities of materials in the image field of view. This image is tuned to an emissivity of 0.98. The point “Sp1” in this image is shown to have an apparent temperature of -0.8 degrees Celsius. The mostly vertical white streak in this image is actually sewage line buried under the ground, but the heat from it reach the surface and the emitted thermal radiation is visible by a LWIR camera.

Continue reading “Infrastructure is best surveyed from the air – and in infrared!”

Using the Trimble R10 with Drones to Develop City Models for Professional Planners

by Ryan Wicks

City and regional planners have the daunting task of developing a vision for the future of both the physical, aesthetic and cultural feel of an area. This often involves engaging multiple parties that have a stake in that future, identifying convergent or divergent needs or desires of those stakeholders, identifying themes within those needs or desires, and developing not just one potential plan, but a multitude of plans that can be considered in comparison. Continue reading “Using the Trimble R10 with Drones to Develop City Models for Professional Planners”

UMass researchers using radar to detect drones

Drone flights were in support of a project lead by a Collaborative Adaptive Sensing of the Atmosphere (CASA) research team in the UMass Amherst Electrical and Computer Engineering Department (http://www.casa.umass.edu/). The team, led by Krsztof Orzel and Apoorva Bajaj, wanted to test the ability of their weather radar system to track and identify UAS targets. The Trimble ZX5 hexacopter was flown in a variety of patterns and altitudes to test the limits at which the drone could be detected. The drone was also flown simultaneously with the a DJI Spreading Wings 900 (that had been modified with a PixHawk for its flight controller) which was flown by another independent pilot. The simultaneous flights allowed the opportunity to start to get a sense of how easily the weather radar could de-conflict the two signals from each of the drones. By comparing the radar signal log to the flight logs of the multirotor UAVs, the team aims to gain a sense of the accuracy and precision of their radar instrumentation, and in the future they aim to tweak the signal processing algorithms to yield better results. Continue reading “UMass researchers using radar to detect drones”