A Prelude to Quantum Field Theory
Problems for Chapter 6

1) **Relativistic Coulomb scattering** Compute the full, relativistic expression for $d\sigma/d\Omega$ to $O(e^4)$ for Coulomb scattering, generalizing Eq. 6.31.

2) **Yukawa interaction** Calculate the potential $V(r)$ between two nearly static charges for the massive vector particle of Eq. 6.60. You will find that it is exponentially suppressed at large distances. Identify the screening length ξ from the exponential factor $e^{-r/\xi}$.

3) **A cross section.** Consider the theory of two complex scalar fields ϕ and χ with masses m_ϕ and m_χ, both carrying electromagnetic charge q.

 1. Write down the Feynman rules for the vertices that describe the theory.
 2. Compute, to leading order in q, the matrix element for the scattering $\phi^+\phi^- \rightarrow \chi^+\chi^-$.
 3. Use this matrix element to compute the total cross section of the process.

4) **A decay rate** We can now do a complete calculation of a realistic system. A simple yet physical example is the decay $\Sigma^+ \rightarrow P\pi^0$. Here the Σ^+ is a spin 1/2 particle similar to the proton P, but with a mass of 1189 MeV/c2 compared to the proton’s mass of 938 MeV/c2. For this problem the π^0 can be treated as a real scalar field with a mass of 135 MeV/c2. (A book on particle physics will tell you that it is a pseudo-scalar and will explain what that means.) If we were to write a Lagrangian to describe this transition we could use non-relativistic fermion fields for the spin 1/2 particles, such that

 $$\mathcal{L}_I = -g\psi_P^*\psi_\Sigma\phi_\pi$$ \hspace{1cm} (1)

 a) Use dimensional analysis to show that the coupling constant g is dimensionless in natural units, much like the electric charge e.

 a) Use this to calculate the decay rate.
b) The Σ^+ lifetime is $\tau = 1/\Gamma = 0.8 \times 10^{-10}$ sec, and this mode has a branching fraction ($=\Gamma_{P\pi}/\Gamma_{tot}$) of 52%. Use this information to calculate the coupling strength g. You should find a number very much smaller than the electric charge. This is an indication that the decay is due to the weak interaction, which is, after all, weak.