A Prelude to Quantum Field Theory
Problems for Chapter 3

1. **Euler-Lagrange, with second derivatives.** Using eq. (3.30) right number?, show that the equation of motion following from the Lagrangian $L = -\frac{1}{2} \phi [\Box + m^2] \phi$ is the same as for $L = \frac{1}{2} [\partial_\mu \phi \partial^\mu \phi - m^2 \phi^2]$. In the action, these two forms are related by integration by parts when one drops the surface contribution.

2. **Photon stress-energy.** Derive eq. (3.81) starting directly from the Lagrangian and the definition of photon field. There are interesting cancellations that allow to get to the right result.

3. **The Landau theory of phase transitions as a field theory.** Let us consider a one-component ferromagnet described by a field $\phi(t, x)$ representing the local magnetization. At equilibrium, the field is time-independent, so that the free energy will be given by an expression of the form

$$E = \frac{1}{2} (\nabla \phi)^2 + V(\phi),$$

where we assume

$$V(\phi) = \frac{m^2}{2} \phi^2 + \frac{\lambda_4}{4} \phi^4 + \frac{\lambda_6}{6} \phi^6,$$

where $\lambda_6 > 0$ is needed to guarantee stability of the system. In general the parameters of this theory depend on temperature. In particular, in the Landau theory of ferromagnetism one assumes $m^2 = a(T - T_0)$ with a and T_0 positive constants and one neglects the dependence of λ_4 and λ_6 on temperature.

(a) Use variational techniques to derive the equation that determines the configuration of minimum free energy.

(b) Assume that $\lambda_4 < 0$ and $\lambda_6 > 0$. Plot the energy of the vacuum state as a function of ϕ for various values of the temperature. Show that at large enough temperatures the energy is minimal at $\phi = 0$, but there is a temperature $T_c > T_0$ where the system displays nonzero magnetization $\phi \neq 0$. Compute T_c. Sketch a
plot of the value of ϕ that minimizes energy as a function of T. Is this a first or a second order phase transition? [In a first order phase transition the order parameter changes discontinuously as a function of T; in a second order phase transition the first derivative is discontinuous]

(c) Repeat the steps of question (b) above in the case $\lambda_4 > 0$. At what temperature does the phase transition happen in this case? Is it a first or a second order phase transition?

4. A theory with higher derivatives. Show that a theory with a higher derivative with a Lagrangian given by

$$\mathcal{L} = \frac{\sigma}{\Lambda^2} (\partial_\mu \partial^\mu \phi) (\partial_\nu \partial^\nu \phi),$$

actually describes two scalar fields, and at least one of them has a wrong sign kinetic term. In the Lagrangian above σ can be either +1 or -1 and Λ is a constant with the dimensions of an energy.

To do this, rewrite $(\partial_\mu \partial^\mu \phi) (\partial_\nu \partial^\nu \phi)$ as χ^2, where χ is an auxiliary field that is imposed to be equal to $(\partial_\mu \partial^\mu \phi)$ by the addition to \mathcal{L} of a Lagrange multiplier $\lambda(\chi - \partial_\mu \partial^\mu \phi)$. Now the Lagrangian has three fields ϕ, χ and λ. Eliminate all the non dynamical fields from the Lagrangian and diagonalize the kinetic term. You should obtain, irrespective of the sign of σ, one field with positive and one field with negative coefficient of the kinetic term. What are the masses of these two fields?

5. Charge algebra. Consider a theory with N real scalar fields whose Lagrangian in symmetric under the transformation

$$\phi_i(x^\mu) \rightarrow \sum_{j=1}^{N} T_{ij} \phi_j(x^\mu),$$

where the matrix T is an element of a Lie group of dimension M, that means that the generic matrix T can be written as $T = e^{i \sum_k \alpha_k \tau_k}$, where the α_ks are real numbers and the τ_k are the generators of the group, i.e. $N \times N$ matrices that satisfy some algebra

$$[\tau_k, \tau_l] = i \sum_m C_{klm} \tau_m.$$
where \([..., ...]\) denotes the commutator and where the constants \(C_{klm}(= -C_{lkm})\) are known as the structure constants of the Lie group.

(a) Compute the expression of Nöther currents \(j^\mu_k\) associated to the invariance of the Lagrangian under variations with respect to the parameter \(\alpha_k\).

(b) If \(\hat{Q}_k\) is the charge operator associated to \(j^\mu_k\), show that the charges satisfy the same Lie algebra as the generators of the group that is associated to those charges. This means that

\[
[\hat{Q}_k, \hat{Q}_l] = i \sum_{m} C_{klm} \hat{Q}_m. \tag{1}
\]

[Note that you might have to judiciously choose the factors of the imaginary unit \(i\) in the definition of \(j^\mu_k\) in order for equation (1) above to be valid.]