How might higher-ed COVID-19 asymptomatic testing influence testing rates and percent positivity in Hampshire County?∗†‡

Joe Pater1,2, Michael Stein1,3, and Susan Voss§1,4

1Residents of Northampton, MA with children in Northampton Public Schools
2Professor of Linguistics, University of Massachusetts Amherst, pater@linguist.umass.edu
3PhD, Political Science, emailmkestein@gmail.com
4Professor of Engineering, Smith College, svoss@smith.edu

January 17, 2021

∗This version replaces the Jan. 1, 2021 version that included an error in data that was provided to us by the City of Northampton. We have a request pending to the state for local data that separates out higher-ed testing. We hope it will be fulfilled soon, making much of the data analysis presented here unnecessary.

†Comments and discussion welcome: please address e-mail to all three authors.

‡Acknowledgements: Thank you to Joe Pater (père), Emily Riddle, and Nicholas Horton for comments on earlier drafts, and to them and Karen Foster for helpful discussion. Thank you to Mary Detloff (UMass Amherst Office of News and Media Relations) for answering questions about the UMass data, to Jessica Vallone (Project Manager for Asymptomatic Testing at Smith College) for providing additional details about the Smith data, and Paul S. Kandel (Strategic IT Project Management Lead COVID-19 Testing & Tracing Project Manager at Mount Holyoke College) for providing weekly aggregated data.

§This work is independent of SV’s membership on the Northampton School Committee and represents her own views.
Executive Summary

This white paper explores the impact of higher education testing on the COVID-19 data reported by the state for Hampshire county. We show that in Hampshire County, home to the Five College Consortium, the data are dominated by higher-ed testing. The number of tests associated with testing at the Five Colleges is about 90% of the number of total tests in Hampshire County. This means that the test numbers provided by the state are likely not adequately representing the broader community, and may be concealing inadequate testing capacity for community members outside higher-ed.

Because higher-ed testing involves repeated testing of asymptomatic people, it has much lower percent positivity rates than testing of the general public. Its dominance in the Hampshire County data appears to skew positivity rates. Specifically, for the period between 8/26/20 - 1/14/21, we find that the percent positivity rate for Hampshire County including higher education testing is 1.17%, but with higher education testing removed jumps to about 4.56%.

We also demonstrate how the effect of higher-ed testing can impact a municipality within the county by exploring the impact of Smith College testing on the percent positivity rate of Northampton, MA. We find that with Smith testing removed, Northampton’s percent positivity rate rises from 3.36 to 4.75 in the week ending 1/14.

Because there are currently no publicly available data on the towns or cities of residence associated with the Five College tests, our estimates of the effect of higher-ed testing are preliminary. Nonetheless, it seems likely from these estimates that the dominance of higher-ed testing is impacting the classification of towns and cities in terms of the state’s color-coded risk metric.

We urge state and local leaders to:

- Determine if Hampshire county residents who are not employed within a higher-ed institution have adequate access to COVID-19 testing.
- Publicly share appropriate local data so that citizens and local leaders understand the uncertainty in the state-reported data and are able to make local data-driven decisions.
- Offer guidance to counties and municipalities with significant higher-ed testing on how to interpret their local percent positivity values in regard to public health guidance.
Overview of higher-ed COVID-19 testing in Massachusetts

Many higher-ed institutions across Massachusetts have implemented mandated routine and repeated asymptomatic COVID-19 testing for staff and students, often multiple times a week for each person, primarily through the Broad Institute.\(^1\) While this testing has played an essential role in controlling the spread of COVID-19 at these institutions, the extensive testing also contributes a large number of tests, from a small subset of the MA population who are being repeatedly tested, to the state’s total tests. As demonstrated in Fig.\(^1\), these higher-ed tests play a significant role in reducing what the state reports as their percent positivity, which is defined as:

\[
\text{Percent Positivity} = \frac{\text{Positive Tests}}{\text{Total Tests Administered}} \times 100.
\]

Figure 1: Page 4 from the Massachusetts Department of Public Health COVID-19 Dashboard, Dec. 22, 2020. The plots demonstrate that state-wide, COVID-19 testing within higher-ed settings have a sizeable effect on the percent positivity calculation.

While we applaud the state for reporting their aggregate percent positivity data both with and without the higher-ed testing included, we are concerned about the approach as it relates to these important questions:\(^2\)

1. Why does the state cite the percent positivity calculated from data that include all of the

\(^1\)https://COVID19-testing.broadinstitute.org/
\(^2\)The first of these issues was raised in a Sept. 28 Boston Globe article https://www.bostonglobe.com/2020/09/28/nation/rate-positive-tests-increases-mass-some-experts-urge-caution/
repeated, higher-ed testings (dark blue line of Fig. 1) as the metric both reported in the state’s daily dashboard and that appears to be used to make policy decisions?

2. Why do all percent positivity data reported at the local level (county and city/town) include the higher-ed tests? This approach makes it impossible to understand the local COVID-19 percent positivity rates in communities where the higher-ed testing dominates the total number of tests (e.g., Hampshire County).

A second daily plot from the state confirms that the higher-ed testing skews the story of COVID-19 percent positivity rates. Figure 2 (left) shows that a substantial percentage of daily tests – approaching 50% on many days – are within the higher-ed setting (light blue), yet an almost indistinguishable number of higher-ed tests are positive when compared to the number of positive tests outside of higher-ed (Fig. 2 right). This figure alone suggests that it is inappropriate to merge these different data sets into the one and only metric reported at a county, city, or town level.

![Figure 2](image)

Figure 2: Page 22 from the Massachusetts Department of Public Health COVID-19 Dashboard, Dec. 22, 2020. The plots demonstrate that state-wide, COVID-19 testing within higher-ed settings account for a large fraction of total tests (left) but a very small fraction of positive tests (right).

Overview of higher-ed COVID-19 testing in Hampshire County

Public health data that allow the higher-ed data to be disaggregated from the general community data are not publicly available at a county, city, or town level as they are at the state level. As demonstrated in Figs. 1 and 2, it is essential to separate these populations because they have population-specific percent positivities that are substantially different from each other. These differences are likely due to the repeated testing of asymptomatic people within the higher-ed community. In fact, as part of the ongoing higher-ed testing, one of the authors of this paper (SV)
has been tested 36 times since August 24, which is clearly not the same as testing 36 different people. However, Massachusetts’ method to calculate and report percent positivity data to counties, cities, and towns treats each of the tests, whether or not they are unique tests or repeated tests on an individual, as contributing equally to the total tests performed.

The effect of higher-ed testing is particularly significant in communities like Hampshire County where there are multiple and large higher-ed institutions. Hampshire County is home to the Five College Consortium, which across five Hampshire County campuses is contributing an impressive and dominating number of tests to the cities and towns of Hampshire County. Thus, understanding the effect of the higher-ed COVID-19 testing within Hampshire County appears essential in order to interpret local data that drive local decision making regarding COVID-19 policies.

Figure 3 compares the total number of COVID-19 tests per week from residents of Hampshire County with the number of tests done within the higher-ed community of Hampshire County. The black line with circles is the total number of all tests reported for all Hampshire County residents each week, including those from employees and students at each of the Five Colleges who reside in Hampshire County. The weekly public health report from the Massachusetts Department of Public Health provides a cumulative total; here, the plotted weekly totals for Hampshire County are calculated by taking the difference of the cumulative totals between two sequential weeks.

The green line in Fig. 3 plots the total number of weekly tests done within the Five College Consortium, calculated by summing the weekly tests for each of the Five College institutions (also plotted). These Five College data come from their respective COVID-19 online dashboards listed below. The weekly breakdowns for Smith and Mount Holyoke Colleges are not included in their dashboards and were obtained via email from their respective COVID-19 testing and tracing teams.

- https://www.umass.edu/coronavirus/dashboard
- https://www.smith.edu/COVID19/health-safety/coronavirus-screening

Collectively, as of Dec. 16, 2020, the Five College COVID-19 testing programs reported a total of 273,067 tests, specifically: Amherst College (57,820 tests), the University of Massachusetts at Amherst (179,051 tests), Mount Holyoke College (11,320 tests), Hampshire College (5571 tests), and Smith College (19,305 tests). Of these, 270,754 tests appear to be after August 11, 2020. As we discuss in the next section, the total for Hampshire County from Aug. 12 through Dec. 16 was about 302,251.

3Amherst College (1865 tests) and UMass (448 tests) report relatively small numbers of tests before August 12.
Figure 3: The same data are plotted on a linear (upper) and logarithmic (lower) scale. Hampshire County numbers of weekly tests were obtained from the MA weekly dashboard, and reflect the differences in the number of tests reported from Wednesday of one week through Tuesday of the following week. Test numbers from each of the Five College testing programs were obtained from each institution’s COVID-19 online dashboard and in some cases via email to get weekly data. The Five College data reported as numbers of tests performed from Monday though Sunday, and thus lag the state data collection schedule by one day. However, because the lag is consistent and the same every week, and tests appear to take about a day to reach the state system, we have simplified the plot to match the weeks defined by the state of MA.
State reporting and the number of tests reported for Hampshire County

When a COVID-19 test is performed in Massachusetts, the test is assigned to the city or town from where the person being tested resides and not from the location of the testing. Unfortunately, the state does not appear to provide information as to which cities and towns the Five College tests are assigned in the state database, which makes it impossible to calculate the definitive percentage of higher-ed tests that are associated with a given county or city or town in Massachusetts. At the same time, it is clear that the higher-ed testing has large effects on Hampshire County, and this work explores the types of effects that are likely.

The state of MA has reported 332,172 COVID-19 tests in Hampshire county through Dec. 15, 2020, with a relatively small number of total tests (31,551 tests) before August 12, 2020, when Hampshire county colleges started ramping up their testing programs. Thus, from August 12 through Dec. 15, there have been about 300,621 COVID-19 tests on residents of Hampshire county, with a substantial percentage of tests coming from the repeated, asymptomatic testing programs associated with the Five College Consortium. Since we know the total number of tests within the Five College community as a cumulative number through Dec. 16, we will estimate the total number of Hampshire County tests on Dec. 16 by adding an additional 1630 tests to the number reported by the state on Dec. 15, for an estimated total of 302,251 Hampshire County tests from Aug. 12 through Dec. 16, 2020.

Higher-ed tests dominate total tests in Hampshire County: Aug. 12-Dec. 16, 2020

It would be helpful for Massachusetts decision makers and citizens to understand the effect of higher-ed testing on the data reported by the state for their county and city/town. This is particularly an issue for Hampshire County due to the large number of higher-ed tests relative to total tests. Ideally, it would be desirable to understand and calculate the ratio:

\[
\frac{\text{Number of higher education tests from Hampshire County residents since Aug.12}}{\text{Total Number of Hampshire County tests since Aug.12}}. \tag{2}
\]

However, given current reporting structures from the state of Massachusetts, calculating the ratio in Eq. 2 for a specific county or city/town is not possible. We can, however, calculate the ratio between the tests administered by institutions and their respective counties. For Hampshire County,

\[
\frac{\text{Number of Five College tests from students and staff since Aug.12}}{\text{Total Number of Hampshire County tests since Aug.12}} \approx \frac{270,754}{302,251} = 0.90 \tag{3}
\]

The 14-day average daily number of tests in Hampshire County was 1630 in the dashboard released by MA on Dec. 17.
If one assumes that all 270,754 tests done among the Five College institutions were associated with Hampshire County residents, and no Hampshire County residents participated in higher-ed testing outside of Hampshire County, then about 90% of Hampshire County’s tests would be associated with higher-ed testing. Obviously, these assumptions are likely flawed to some extent. For each of the Five College higher-ed tests associated with a person who does not reside in Hampshire County, the numerator and thus ratio in Eq. 3 decreases. At the same time, for any resident of Hampshire County who is tested as part of a higher-ed testing program not associated with the Five College community (e.g., from a different county), their corresponding tests are added to the numerator of Eq. 3 increasing the ratio. Either way, the ratio of 0.90 in Eq. 3 is large enough that it is almost certain that higher-ed testing plays a large role in Hampshire County COVID-19 testing data.

This rough analysis suggests that the number of COVID-19 tests available outside of higher-ed in Hampshire County is relatively small compared to the higher-ed testing. This scenario likely leads to both (1) a misrepresentation of the testing actually available to the community and (2) an unintended reduction in the calculation of the state’s own metric of percent positivity which can result in local policymakers, business owners, and individuals not having accurate information about the risk of community spread.

Figure 4 compares the weekly numbers of tests for all of Hampshire County to the communities that are home to the Five College institutions (Amherst, Northampton, and Mount Holyoke), and the aggregate of tests from all other Hampshire County towns added together. What is needed are the test numbers for these communities with the higher-ed numbers completely removed, and that information is not available to us. However, the pink line, which represents the difference between all Hampshire County tests and the Hampshire County higher-ed tests, further suggests that the vast majority of tests are associated with the Five College testing programs.

Not included in the figures or this discussion are other testing programs similar to those in higher ed. As an example, the Williston-Northampton secondary school in Easthampton reports a total of 10,499 asymptomatic, two times per week tests of students and faculty, many of whom reside in Hampshire County. Deerfield Academy (Franklin County) has reported 15,940 tests, which is more tests than the total for the town of Deerfield.

6Percent positivity is defined as the percent of positive tests relative to all tests administered, including multiple tests on the same person.
Figure 4: The same data are plotted on a linear (upper) and logarithmic (lower) scale. Hampshire County and individual city/town numbers of weekly tests were obtained from the MA weekly dashboard and reflect tests reported from Wednesday of one week through Tuesday of the following week.
Estimates of local percent positivity outside of higher-ed testing

Hampshire County Analysis

To estimate the overall effect of higher-ed testing on Hampshire County’s percent positivity (Eq. 1), we first extracted the total number of tests and positives from the Five College COVID-19 dashboards on January 11, 2021 (Fig. 5). The percent positivity for each institution is well beneath 1%, and the percent positivity calculated over the total number of tests and positives is only 0.24%.

Next, we calculated totals for Hampshire County over a similar time period by summing two-week totals provided in the weekly state public health reports (Fig. 6). The percent positivity over the entire period is 1.17%, and generally increases with time to a maximum of 4.95% for January 14. The total Hampshire County percent positivity of 1.17% is 4.9 times higher than the total Five College percent positivity of 0.24%.

Figure 7 presents multiple scenarios to put bounds on the percent positivity for Hampshire County testing with higher-ed testing removed. The top row shows the calculation of the total Hampshire County percent positivity of 1.17%, and the second row shows the calculation of the total Five College percent positivity of 0.24%. The third row assumes that all Five College tests are associated with Hampshire County, and demonstrates that under this assumption the percent positivity in Hampshire County, excluding higher ed, would be 7.48%; this factor of 6.4 increase from 1.17% provides a likely upper bound on the effect of higher-ed testing on percent positivity.

At least some of the individuals tested in the Five Colleges reside outside of Hampshire County. To account for this, rows four and five of Fig. 7 calculate percent positivity assuming 90% and 75% of Five College testing is associated with Hampshire County residents. The resulting percent positivities of 4.56% and 2.93%, respectively, are still strikingly higher than the overall Hampshire County percentage of 1.17% by factors of 3.9 and 2.5.

7 This section has been added since our original Jan. 1 report; thus data here extend further in time than the previous section.

8 Some individuals living in Hampshire County may be tested in higher-ed settings elsewhere, but we suspect that there is a larger number of residents of other counties being tested at the Five Colleges.
Figure 6: Hampshire County biweekly totals calculated by summing two-week totals provided in the weekly state public health reports. We started with the report of August 26, whose two-week period starts August 9, took the totals from every other weekly report up until the most recent one of January 13, whose two-week period ends January 9 (the Jan. 13 county report is separate from the Jan. 14 public health report which no longer includes county data).

<table>
<thead>
<tr>
<th>Report Date</th>
<th>Number Tests</th>
<th>Number Positive</th>
<th>Percent Positivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/26</td>
<td>13,639</td>
<td>87</td>
<td>0.64%</td>
</tr>
<tr>
<td>9/9</td>
<td>32,240</td>
<td>68</td>
<td>0.21%</td>
</tr>
<tr>
<td>9/23</td>
<td>34,266</td>
<td>27</td>
<td>0.08%</td>
</tr>
<tr>
<td>10/7</td>
<td>37,796</td>
<td>134</td>
<td>0.35%</td>
</tr>
<tr>
<td>10/22</td>
<td>39,845</td>
<td>91</td>
<td>0.23%</td>
</tr>
<tr>
<td>11/6</td>
<td>39,145</td>
<td>130</td>
<td>0.33%</td>
</tr>
<tr>
<td>11/19</td>
<td>43,066</td>
<td>398</td>
<td>0.92%</td>
</tr>
<tr>
<td>12/3</td>
<td>33,399</td>
<td>493</td>
<td>1.48%</td>
</tr>
<tr>
<td>12/17</td>
<td>22,816</td>
<td>706</td>
<td>3.09%</td>
</tr>
<tr>
<td>12/31</td>
<td>22,017</td>
<td>750</td>
<td>3.41%</td>
</tr>
<tr>
<td>1/14</td>
<td>22,144</td>
<td>1095</td>
<td>4.94%</td>
</tr>
<tr>
<td>Total</td>
<td>340,373</td>
<td>3979</td>
<td>1.17%</td>
</tr>
</tbody>
</table>

Figure 7: Percent positivity calculations for Hampshire County (row 1), Five College community (row 2), Hampshire County minus Five College numbers (row 3), Hampshire County minus 90% Five College numbers (row 4), and Hampshire County minus 75% Five College numbers. The column “Factor re State Report” is the number that is multiplied by the state's percent positivity values to calculate the listed scenario percent positivity values.
It is almost certain that the percent positivity for non-higher-ed testing in Hampshire County over the period we are examining is somewhere in the ranges displayed in Fig. 7, which are 2.5-6.4 times higher than the overall percent positivity values provided by the state. We expect that the calculation done with 90% of the Five College tests is most accurate and predict that the Hampshire County positivity rates with higher-ed testing removed are a factor of about 3.9 times higher than the overall percentages reported by the state.

City of Northampton Analysis

To estimate the effect of higher-ed testing on a municipality’s positivity rate, and how it can change over the course of time, we analyze biweekly counts and percent positivity for Northampton and Smith College (located in Northampton).

Figure 8 lists the total numbers of tests, numbers of positive tests, and corresponding percent positivity both assigned to Northampton and reported by Smith College. Column 7 reports an estimate of the percent positivity for Northampton with Smith removed, and column 8 reports the factor by which the state’s percent positivity value increases when the Smith tests are not included. This factor varies from a low of 1.17 to a high of 3.84; with some of the smaller factors associated with weeks corresponding to vacations and fewer tests performed at the college when it was closed.

This exploration of the Northampton data is likely underestimating the effect of higher-ed testing. Although about 30% of people (345 out of 1117) tested by Smith do not reside in Northampton, it is likely that an even greater number than 345 of Northampton residents were tested at other higher-ed institutions or private schools beyond Smith College. As examples, Northampton residents who were on campus working at higher-ed institutions outside of Northampton (e.g., Amherst College, UMass Amherst, Hampshire, or Mount Holyoke) were also tested once or twice a week. Additionally, day students from Northampton who attend Deerfield Academy, the Williston-Northampton School, or other private schools in the area were tested regularly.

The data in the lowest two rows of Fig. 8 provide a good illustration of how higher-ed testing can skew the overall percent positivity reported by the state. For the first two weeks of January, Northampton’s percent positivity reported by the state stayed about the same (3.32% and 3.36%), and the more recent one was labeled “No Change” in the state’s weekly report. However, when the Smith testing program is removed, the resulting percent positivity shows an increase from 3.90% to 4.75% across these weeks. This increase results from a large increase in testing at Smith between weeks when the college was closed and when it was open; the weeks ending Jan. 1 and Jan. 8 had 267 versus 1040 tests at Smith College, respectively. We expect that the influence of higher-ed testing on the Northampton data could be even greater in the next public health report, and will likely continue to increase as students return for the spring semester.

9On Jan. 15 it was reported to us by Smith College’s Testing and Tracing Program that 91% of the individuals tested reside in Hampshire County. Given the large percentage of students that are included in the Amherst College and UMass Amherst testing programs, we assume 90% is a reasonable estimate for all of these data.
Analysis of Northampton with and without Smith College Data

<table>
<thead>
<tr>
<th>Report date</th>
<th>Number Total Tests Northampton (14 days)</th>
<th>Number Positive Tests Northampton (14 days)</th>
<th>Number Total Tests Smith (14 days)</th>
<th>Number Positive Tests Smith (14 days)</th>
<th>Percent Positivity Northampton</th>
<th>Percent Positivity (Remove Smith)</th>
<th>Factor re State Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/9</td>
<td>3442</td>
<td>6</td>
<td>2480</td>
<td>1</td>
<td>0.17%</td>
<td>0.52%</td>
<td>2.98</td>
</tr>
<tr>
<td>9/16</td>
<td>3723</td>
<td>4</td>
<td>2754</td>
<td>0</td>
<td>0.11%</td>
<td>0.41%</td>
<td>3.84</td>
</tr>
<tr>
<td>9/23</td>
<td>3671</td>
<td>1</td>
<td>2728</td>
<td>0</td>
<td>0.03%</td>
<td>0.09%</td>
<td>3.39</td>
</tr>
<tr>
<td>9/30</td>
<td>4165</td>
<td>2</td>
<td>2709</td>
<td>0</td>
<td>0.05%</td>
<td>0.14%</td>
<td>2.86</td>
</tr>
<tr>
<td>10/7</td>
<td>4289</td>
<td>3</td>
<td>2756</td>
<td>1</td>
<td>0.07%</td>
<td>0.13%</td>
<td>1.87</td>
</tr>
<tr>
<td>10/14</td>
<td>4294</td>
<td>6</td>
<td>2701</td>
<td>1</td>
<td>0.14%</td>
<td>0.31%</td>
<td>2.25</td>
</tr>
<tr>
<td>10/22</td>
<td>4223</td>
<td>6</td>
<td>2398</td>
<td>0</td>
<td>0.14%</td>
<td>0.33%</td>
<td>2.31</td>
</tr>
<tr>
<td>10/29</td>
<td>4120</td>
<td>7</td>
<td>2281</td>
<td>0</td>
<td>0.17%</td>
<td>0.38%</td>
<td>2.24</td>
</tr>
<tr>
<td>11/6</td>
<td>4147</td>
<td>21</td>
<td>2310</td>
<td>0</td>
<td>0.51%</td>
<td>1.14%</td>
<td>2.26</td>
</tr>
<tr>
<td>11/12</td>
<td>4659</td>
<td>36</td>
<td>2322</td>
<td>0</td>
<td>0.77%</td>
<td>1.54%</td>
<td>1.99</td>
</tr>
<tr>
<td>11/19</td>
<td>5002</td>
<td>50</td>
<td>2365</td>
<td>1</td>
<td>1.00%</td>
<td>1.86%</td>
<td>1.86</td>
</tr>
<tr>
<td>11/27</td>
<td>5167</td>
<td>64</td>
<td>2397</td>
<td>2</td>
<td>1.24%</td>
<td>2.24%</td>
<td>1.81</td>
</tr>
<tr>
<td>12/3</td>
<td>4535</td>
<td>52</td>
<td>1893</td>
<td>1</td>
<td>1.15%</td>
<td>1.93%</td>
<td>1.68</td>
</tr>
<tr>
<td>12/10</td>
<td>4139</td>
<td>53</td>
<td>1832</td>
<td>1</td>
<td>1.28%</td>
<td>2.25%</td>
<td>1.76</td>
</tr>
<tr>
<td>12/17</td>
<td>4765</td>
<td>90</td>
<td>2312</td>
<td>3</td>
<td>1.89%</td>
<td>3.55%</td>
<td>1.88</td>
</tr>
<tr>
<td>12/24</td>
<td>5124</td>
<td>100</td>
<td>2173</td>
<td>4</td>
<td>1.95%</td>
<td>3.25%</td>
<td>1.67</td>
</tr>
<tr>
<td>12/31</td>
<td>4842</td>
<td>106</td>
<td>1340</td>
<td>2</td>
<td>2.19%</td>
<td>2.97%</td>
<td>1.36</td>
</tr>
<tr>
<td>1/7</td>
<td>3798</td>
<td>126</td>
<td>589</td>
<td>1</td>
<td>3.32%</td>
<td>3.90%</td>
<td>1.17</td>
</tr>
<tr>
<td>1/14</td>
<td>4254</td>
<td>143</td>
<td>1307</td>
<td>3</td>
<td>3.36%</td>
<td>4.75%</td>
<td>1.41</td>
</tr>
</tbody>
</table>

Figure 8: The dates in the left-hand column show the weekly report from which the Northampton numbers were extracted. Each of these reports provides data for a two-week period ending on the previous Saturday, 4 or 5 days before the report date. The Smith numbers are the sum of two consecutive weeks that end on the corresponding Friday.

Implications for individual and community decision-making

In our view, the striking difference between the local percent positivity values reported by the state, and those that result when we subtract the Five College testing data, immediately raises questions for local policy making and questions about whether the community is being adequately informed about the incidence of the disease and whether sufficient testing is available.

The percent positivity metric is used by the state in their classification of municipalities as “green”, “yellow” and “red”. These widely reported and used classifications are applied in guidance from the Department of Elementary and Secondary Education about in-person schooling at a town and city level, as well as in guidance out a county level for other decisions (e.g., whether staff testing is needed for congregate and long-term health care facilities). In the state’s Jan. 14 public health report, Northampton was classified as yellow, because its percent positivity was beneath 5%. At the same time, Northampton’s daily average of new cases was at 31.8 per 100K population, well
above the criterion of 10 for a red classification (it has been above 10 since the Nov. 19 report).

It is unlikely that the state took into account the potentially dramatic effects of higher-
ed testing in setting up their metric. It is also not obvious how to adjust for it. A Sept. 28 Boston Globe article contains a suggestion that the percent positivity excluding higher-
ed testing is more informative, and questions why the state relies on a percent positivity
that includes higher ed in policy making (https://www.bostonglobe.com/2020/09/28/nation/ rate-positive-tests-increases-mass-some-experts-urge-caution/). It is not clear that ex-
cluding the population represented by the higher-ed tests is the right approach either; one inter-
mediate possibility might be to calculate testing and percent positivity that weighs the higher ed
and the other types of testing by the associated populations.

It is likely that the public also looks to the color coding classification for guidance about risk. There
is probably not a widespread understanding about the potential for higher-ed numbers to skew the
percent positivity values, and thus affect the classification (the just-cited Boston Globe article is a
rare public presentation of the issue).

The percent positivity metric is also used to determine whether or not sufficient testing is being
done. As discussed in a Sept. 4th Wall Street Journal article, the World Health Organization has
given 5% as a target to stay below to ensure adequate testing (https://www.wsj.com/articles/
seems likely that this 5% recommended cutoff is often exceeded in non-higher-ed testing both in
Hampshire County and in Northampton, as the analysis here has made conservative assumptions
about the higher-ed population’s residences. Hampshire County has recently seen the addition of
free asymptomatic community testing (at UMass Amherst), which one hopes will help to address
this issue. The City of Northampton has also started asymptomatic testing of teachers and staff
as more children return to school. The dynamic and changing nature of our fractured testing ap-
paratus contributes to the difficulty of data collection and reporting and underscores the need for
data transparency and guidance at the state and local level.

Questions for state and local leaders

1. Do Hampshire county residents who are not employed within a higher-ed institution have
adequate access to COVID-19 testing?

2. How can the public access local data so that citizens and local leaders understand the uncer-
tainty in the state-reported data and are able to make local data-driven decisions?

3. Can guidance be provided to counties and municipalities with significant higher-ed testing on
how to interpret their local percent positivity values with regard to public health guidance?
Some final thoughts

Accurate, up-to-date local COVID-19 data are important not only for governmental decision makers, but also for business owners concerned about the health of their employees and customers, and for community members – especially those who are vulnerable – who want to evaluate the risk of their daily activities. For these reasons, we urge the local and state health authorities to provide local data that separates out the results of higher-ed testing and any other repeated testing performed on special populations (and perhaps also provide a population-weighted average). For example, the weekly public health report could do this for all municipalities in which the proportion of new cases or tests performed that come from higher ed is above a particular criterion. Here we have focused on test numbers and the corresponding percent positivity metric, but the number of new cases in a higher-ed setting could also skew local data. For example, comparison of new case numbers from the UMass Amherst dashboard and the Town of Amherst numbers reported by the state often suggests that a large proportion of the Town of Amherst’s cases originate at UMass. As in the test number comparisons in this paper, firm conclusions are hampered by fact that the state report combines higher-ed testing with testing in the rest of the community.