A Proposal to Expand North Atlantic Right Whale Protection Zones

Jake Yankee- Natural Resources Conservation

Olivia Babine- Environmental Science

Ben D’Ambra- Horticultural Science

Kayshauna Montano- Animal Science

 

The North Atlantic right whale, Eubalaena glacialis, faces a number of challenges to its recovery. Their habitat includes the waters off the U.S. East coast where they come into contact with pollutants, fishing gear, and boats that threaten their survival. The greatest source of right whale mortality is collisions with vessels. In order to mitigate this problem, researchers have utilized a number of strategies to help vessels and whales occupy the same space without colliding with one another. One of the most popular strategies is vessel speed restriction zones. These  are geographic areas in the ocean designated by the National Oceanic and Atmospheric Administration where vessels must slow down to accommodate right whales (Mullen 2013). While these zones cover much of the right whale’s current range, their distribution is patchy with long stretches of unprotected space between them and they do not extend far enough offshore to cover the whale’s entire habitat. To increase the effectiveness of these zones and better protect right whales from ship strikes, we propose that protection areas be expanded to cover the entire U.S. East coast and to extend 30 nautical miles offshore.

Continue Reading

Hydroelectric Power in The Snake River

 

Samantha Bruha: Animal Science

Shane Murphy: Horticulture

Jake Schick: Building Construction Technology

Ashley Artwork: Building Construction Technology

The Nez Perce people reside on the Snake River in North Central Idaho and still practice a hunter-gatherer way of life (Smith, 2018).  In 1855, The United States Government and five Native American tribes residing in Washington, Oregon, and Idaho signed the Treaty of Walla Walla (Smith, 2018)  Since the the original treaty, the Nez Perce Tribe has retained the right to fish, to hunt, and to graze livestock on unclaimed lands outside of the reservation (Smith, 2018).  Due to the addition of hydroelectric dams, beginning in the 1950’s on the Columbia and Snake Rivers, the Nez Perce Tribe has suffered a great loss of fishing resources from the effects of dams on the Salmon populations (Quirke, 2017).  Elliott Moffett, a 65 year old member of the Nez Perce Tribe, fights for Salmon in the lower Snake River (Quirke, 2017). “‘I like to say we are like the Salmon, we need clean, cold, swift running water. And they don’t have that because the dams have impounded their river,’” Moffett states (Quirke, 2017).  Moffett and his fellow activists at the Nimiipuu Protecting the Environment organization, have dedicated their lives to defending the environment and the Nez Perce rights (Support|Nimiipuu Protecting the Environment, 2018).  Every decision the tribe makes has “seven generations ahead” in mind and the scarcity of resources is making it harder and harder to teach future generations how to live off of the land (Support|Nimiipuu Protecting the Environment, 2018).

  Continue Reading

Extending SMA’s by 10 NM to Reduce Vessel Strikes with North Atlantic Right Whales

Abigail Szczepanek, major Natural  Resource Conservation

Hannah Davin, major Environmental Science

Beau Salamon-Davis, major BCT

Most animals names are derived from greek or latin terms, describing their looks or features. The North Atlantic right whale (NARW) is a special case. The right whale coined its name some time in the 17th or 18th century when whaling was becoming popular. Crane (2002) and National Geographic (2018) say they were considered the “right” whale to hunt because they are surface feeders, slow swimmers, yield high amounts of oil, meat and bone, and they float when they are dead. This made them easy targets and were hunted for nearly three centuries. Whalers would either shoot or throw a whale iron, otherwise known as a harpoon, into a whales blubber to create a connection between their boat and the whale. They would pull themselves in closer to the whale and plunge a barbed weapon into the whales lung or heart, ultimately killing it (New Bedford Whaling Museum, 2018). By 1937 there were less than 100 NARW left and commercial whaling was banned internationally (Marine Mammal Science, 2018). The whale was placed under the Endangered Species Act in 1970 (NOAA, 2018). Currently there are only 450 NARW’s left in the Atlantic Ocean and complete extinction is nearing within the next century (Gibbins, 2018). Continue Reading

A new dawn on the horizon for North Cascades Grizzly Bears

Caroline Reusch

Jennifer Harrop

Patrick Scordato

A grizzly bear mom and her cubs on the shores of a lake. The National Park Service and U.S Fish and Wildlife Service have drafted plans to reintroduce at least 200 bears in the Northern Cascades (National Park Service [NPS], 2017, p. 4).

 

 

A female grizzly bear roams the vast forested wilderness of the Northern Cascades, a rich dark brown in color with white tipped hairs glistening in the sun on her back. The large behemoth treads through overgrown vegetation in hopes of finding her next meal of succulent berries, scurrying insects, or the fresh meat of a juvenile moose. Two bear cubs trot along side her, eager to see what she will teach them next. The mom is determined to feed her children, and is willing to relentlessly protect them in the fight for survival. The snow capped Mount Baker sits high above the animals in the vast North Cascade bushland. Respected and revered by many for their incredible strength and speed, grizzlies are deep-rooted into Native American folklore, and into the minds of North Americans as a stoic beast. These animals are a symbol of the great American Pacific Northwest and play a key role in the ecosystem. Continue Reading

Keep the Red Wolves Howling

Authors: Allison Schwarz, Pre-veterinary Science major; Fanula Karanxha, Biochemistry and Molecular Biology major; Sarah Spaulding, Natural Resource Conservation major

A decade ago, on a trip to the Alligator River National Wildlife Refuge along the eastern coast North Carolina, you could spot a 50-80 pound, majestic canine with a distinctive red hue in its fur (Defenders of Wildlife, 2018; Schweig, 2016). At nightfall, their golden eyes could be seen from a distance and their haunting howls could be heard for miles. These elusive creatures are a distant relative of our faithful companions, the dog, but are now critically endangered and one of the rarest sights to see (Fears, 2018). Today, less than 50 animals remain and they can only be found in the 150,000 acres of the Refuge (Fears, 2018, para. 6). These creatures are the iconic American red wolf. Continue Reading

Replace Hydropower Dams to Save the Southern Resident Orca Whale Population!

 

On August 8th 1970, the southern resident orca whale population was ambushed off the coast of Penn Cove, Washington in one of the most infamous whale captures in history (WDC, 2017). This capture involved 80 whales, in which 7 were collected and 5 were killed (WDC, 2017).  The only current living orca from this incident is Lolita (WDC, 2017). She is now the oldest living killer whale in captivity and lives in what is arguably too small of a tank (Save Lolita, n.d; Herrera, 2017). It’s believed that Lolita’s tank doesn’t meet the minimum 48 feet horizontal dimension requirement set by the United States Department of Agriculture (USDA) (Herrera, 2017). Lolita has a 60 foot tank obstructed by a ‘work island’ that separates her pool into two 35 feet sections (Herrera, 2017). Another issue Lolita faces in captivity is solitude (which is abnormal for social animals such as orcas) (Save Lolita, n.d). Due to animal rights advocacy groups making these issues well known to the public, Lolita has become both a symbolic example for why orcas can’t feasibly be kept in captivity and a famous icon for the southern resident orca population. This killer whale population is currently estimated at 80 whales consisting of 3 pods named the J,K and L pods (NOAA Fisheries, 2015). In the fall, spring and summer their territory ranges from waterways near the U.S.-Canadian border to inland waterways in Washington state ( NOAA Fisheries, 2015).

The southern resident orca whale population is also vital for Washington state’s economy. These whales benefit the state’s economy by providing tourism revenue through whale watching (Grace, 2015). The number of people going on whale watches in Washington has even increased over time; from 1998 to 2008, Washington state saw an increase of 108,000 whale watchers and a 3% average annual growth rate (O’Connor, 2009). Due to this increased whale watching tourism, wildlife watching activities (such as whale watching) created over 21,000 jobs in Washington State, yielded $426.9 million in job income, and generated $56.9 million in state tax revenue all in 2001 (Grace, 2015, para. 4). People are also estimated to spend nearly $1 billion annually in Washington viewing wildlife (O’Malley, 2005, para. 1). It’s also estimated that the southern resident orca population itself adds minimally 65-70 million dollars to Washington state’s economy (Grace, 2015, para. 1).

Sadly though, despite all the intrinsic and economic benefits these orcas bring to Washington state, they are facing the threat of extinction. In fact, the southern resident orca population was even added to the endangered species list in 2005 (NOAA fisheries, 2015).They were added to this protection list because the population has fallen from an estimated 200 whales in the late 1800s to a current estimate of 80 whales (NOAA Fisheries, 2015). This population decline even lead to the production of a recovery plan by the National Marine Fisheries Services (National Marine Fisheries Service, 2008). This plan addresses specific potential threats to the southern resident orca population such as prey availability, pollution, vessel effects, oil spills, exetera and outlines goals to minimize these threats and their harm to orcas (National Marine Fisheries Service, 2008). One of the believed reasons behind the orcas small population size is a limited abundance of salmon from the Snake and Columbia rivers (Baker & Peterson, 2017). The southern resident orcas rely on Columbia and Snake river salmon as a food source during the summer when they live in waters off the San Juan Islands that lie northwest of Seattle (Baker & Peterson, 2017). Salmon are an essential food source for these whales because resident killer whales only prey on fish, not other marine mammals (such as seals or sea lions) (Ford et al., 1998, 2009). The Columbia River itself is also especially crucial for southern resident orcas as they display unique feeding behavior there not seen at any other territorial location; they stock up on salmon by sitting at the mouth of the river for days and foraging (Baker & Peterson, 2017). It’s also believed the declining salmon population is a key reason behind the southern resident orcas low population because orcas are predators at the top of their ecosystem’s food chains and don’t serve as prey for other animals (Ford, 2009). Therefore, predation of orcas cannot be considered a valid source for their population decline. As a result, the decreasing salmon population in the Columbia and Snake Rivers has added pressure to the orca population over the past three decades (Baker & Peterson, 2017). The Center for Whale Research and the Center for Conservation Biology (University of Washington) found that low salmon populations also lead to enough nutritional stress to cause two-thirds of  southern resident orca pregnancies to fail between 2007 and 2014 (Baker & Peterson, 2017).The majority of the salmon this whale population consumes also originates from the Snake river, a tributary of the Columbia River (Barker & Peterson, 2017). In short, the southern resident orca population is critically endangered and low salmon populations are putting even more stress on the whales (Barker & Peterson, 2017; Ford 2009). If the northwest salmon population is not restored, it could result in the disappearance of resident orcas in the northwest forever.   

Since 1991, twelve specific populations of Columbia River Basin salmon and steelhead have been protected under the Endangered Species Act (Harrison, 2016). For Snake River Salmon the National Marine Fisheries Service noted that the estimated annual returns of spring/summer Chinook declined from 125,000 fish between 1950 and 1960 to just 12,000 fish in 1979 (Harrison, 2016). Proposed recovery plans have also started legal battles over what actions are necessary to avoid further jeopardizing the species (Harrison, 2016). This debate is complicated by hydropower dams directly affecting salmon and steelheads (Harrison, 2016). These hydropower dams on the Columbia and Snake rivers are inhibiting growth of the river’s salmon population by creating habitat fragmentation, causing direct mortality and decreasing their food supply (Harrison, 2008).

At 1,954 kilometers long, the Columbia river is the 15th longest river in North America; its tributaries and it form the dominant water system in the Pacific Northwest as it drains into seven different western states (Bonneville Power administration , 2001). The history of the dams on the Columbia and Snake rivers date back to Theodore Roosevelt’s presidency, as the construction of the first dam on the Columbia river (the Rock Island dam) began shortly after his election with the sole intention of producing electricity (Harrison, 2008) . By 1975 the Columbia river had four more large dams constructed on it and has had smaller dams constructed on it since (Harrison, 2008).  

These dams inhibit the river’s salmon population because they fragment rivers and therefore impede salmon migration. This negatively impacts the reproduction of the Columbia and Snake river salmon because they then cannot spawn effectively upstream. Salmon need to navigate between spawning sites, rearing habitat (juvenile living space) and the Pacific Ocean in order to reproduce. Salmon hatch in rivers and then travel to the ocean for their adult lives  (National Park Service’s, 2017). Then when they are ready to spawn again, instincts guide them back to their birthplace to spawn (National Park Service’s, 2017). There are also case studies to show that dams, like the ones present in the Snake and Columbia river, prevent the salmon from properly spawning upstream. For example, the presence of the Hemlock Dam on Trout Creek, Washington, USA was linked to the impeded migration of  U.S. threatened Lower Columbia River steelhead (a type of salmon) and other migratory fish by blocking their migration path (Claeson & Coffin, 2016, p. 1144). It is also known that the dams in the Columbia river basin now block more than 55 percent of the spawning and rearing habitat once available to salmon and steelhead (Harrison, 2008).

Dams not only block the upstream passage of adult fish but block the downstream passage of juvenile fish as well. Hydroelectric dams (such as the ones on the Columbia and Snake rivers) compound this problem because they force migrating fish to travel through turbines without a bypass systems (Harrison, 2008). This is a problem for migrating salmon because the spinning blades and/or concrete walls in these turbines could kill or injure juvenile fish drawn in by the current (Harrison, 2008). Biologists estimate that fish drawn through a turbine passage has a 10 to 15 percent chance of dying (Harrison, 2008). This is problematic due to the Snake and Columbia river having multiple hydroelectric dams that increase each fish’s chance of dying by forcing them to travel through turbines to migrate (Harrison, 2008).

The dam’s on the Columbia and Snake rivers are also negatively impacting the salmon populations chance of survival by limiting their sources of food. The hydroelectric dams are doing this by limiting the growth of benthic insects (mayflies,stoneflies, caddisfly nymphs) populations within the rivers. Dams are known to limit benthic insect population growth by increasing water temperatures (Claeson & Coffin, 2016).  Dams increase water temperatures by creating reservoirs that isolate water and create a slow flow over the dam that increases the reservoir’s water and discharge temperature (Claeson & Coffin, 2016). In warmer waters, desirable salmon food sources such as mayfly, stonefly and caddisfly nymphs die off and are replaced by other insects (midges and mosquito larvae) that are much less desirable as food for salmon (Effects of Elevated Water Temperatures on Salmonids, 2000).  Cold water fish such as salmon relay on benthic insect populations as a source of food and decreasing benthic insect populations makes an environment unsuitable for salmon to live in (Claeson & Coffin, 2016, Harrison, 2008).  

The best plan to solve this problem and save both the salmon and orca whale population would be to remove the dams from the Columbia and Snake rivers. Removing the dams would help restore the salmon population that the southern resident orcas so heavily rely on. There have been previous dam removals in the Columbia and Snake river area that have resulted in a successful increase in salmon population. In 2012, removing the Condit Dam from the White Salmon River (a tributary to the Columbia River) restored upstream migration access for the first time in 100 years (Allen et al., 2016, p.192). The number of redd counts (the number of salmon spawning nests) shows the increase in the salmon population (Allen et al., 2016, p.197). In the pre-dam model for the Tule fall Chinook Salmon it’s redd count increased by 60% since dam removal and the Upriver bright fall Chinook Salmon redd count increased from no abundance to around 4,251 redds after dam removal in 2013 (Allen et al., 2016, Table 2). This dramatic increase in spawning means a greater number of salmon are being produced. Other large dam removals include Washington State’s Glines Canyon Dam and the Elwha Dam hydroelectric dam. These dams were removed in 2011 (Nijhuis, 2014). Now salmon can be seen migrating past the former dam sites and as salmon populations recover, research expect the whole food web to benefit (Nijhuis, 2014). These cases set forth by the Condit, Glines Canyon and Elwha Dam removal is further evidence that dam removal in the region can be beneficial to the salmon population.

While these cases have made it clear that dam removal is the best option to restore the salmon population, there are other options available. Alternative methods such as a permanent adult fish ladder can be seen on the Lower Granite Dam (Conca, 2016). However, fish ladders can be problematic because they elevate water temperatures to form a “thermal barrier” that stops adults from migrating upwards into warm waters (Conca, 2016). One method the US Army Corps of Engineers attempted to face this problem was releasing Dworshak reservoir water in to cool the Snake River (Lower Granite Adult Fish Ladder Temperature Improvement System, 2016). Another alternative method is  “daylighting” juvenile fish passage (Conca, 2016).  This is when  juvenile fish passage is allowed through a large elevated bypass flume leading to the Juvenile Fish Facility just downstream of the dam (Conca 2016). Save Our Wild Salmon (a nationwide coalition working to restore salmon and steelheads to the rivers) also argues that the federal government is relying on these unreliable alternative methods such as barging and trucking salmon around the dams and limiting the amount of water in the river (Bogaard, 2017). Implementing these alternative methods have already cost billions of dollars to the US taxpayers and over the past twenty years, researchers still also haven’t found conclusive evidence that federal salmon recovery actions succeeded in helping restore these fish (Bogaard, 2017). Federal agencies have spent more than $8 billion in attempts to restore Columbia and Snake River salmon (Bogaard, 2017). Each year more than $550 million in funding goes to NOAA Fisheries, the Army Corps of Engineers and other federal agencies for this effort (Bogaard, 2017). Removing these dams could be cheaper than these other restoration efforts and revive both the salmon and orca populations. Advocates for dam removal also argue that the removal of these dams is a viable option because they produce most of their power in the spring when it’s not crucial for Northwest power supplies, and it would be relatively simple and inexpensive when comparing the cost to other alternative methods  (Baker & Peterson, 2017).

The main reason some are still resistant to removing these dams is because they provide a significant source of hydropower. There are four main hydroelectric power providing dams on the Snake river; these are the ICE Harbor, Lower Monumental, Little Goose and Lower Granite Dams (Conca, 2016). According to Conca (2016) Ice Harbor Dam produces 1.7 billion kWhs/yr, Lower Monumental dam produces 2.3 billion kWhs/yr, Little Goose dam produces 2.2 billion kWhs/yr and Lower Granite dam produces 2.3 billion kWhs/yr. (Conca, 2016). Washington’s hydroelectric power provides more than two-thirds of Washington’s net electricity generation and almost nine-tenths of the state’s renewable power generation (U.S Energy Information Administration, 2017). As for the Columbia river, The Grand Coulee Dam is the largest hydroelectric power producer in the United States, with a total generating capacity of 6,809,000 kilowatts (U.S Energy Information Administration, 2017). The communities that depend on the Snake and Columbia river’s hydroelectric dam power are then faced to question if there are potential ways to provide Washington state a renewable energy source that doesn’t hurt the salmon population . To end this debate an alternative energy source (specifically wind energy) needs to replace the hydropower provided by the dams on the Snake and Columbia river so that the dams may be removed.

This replacement energy source absolutely needs to be renewable because Washington passed renewable energy standard (RES) legislation in 2006 that requires certain utilities to have fifteen percent of their electricity sales from renewable resources by 2020 and to invest in energy efficiency (American Wind Energy Association, 2014). One viable, renewable energy source that may be used to replace hydroelectric power provided by these dams would be wind energy. In fact, in 2015 Washington ranked ninth in the nation in wind energy electricity generation (U.S Energy Information Administration, 2017). There are still some skeptics regarding the reliability of wind turbines and their ability to produce enough power to feasibly replace other energy sources.  For example, some claim that wind turbines are unpredictable, not dependable enough for consistent power generation and only produce 8% of their total system capacity (Edmunds, 2014).  However, this is mostly incorrect and invalid in this case. Wind energy has already proven itself feasibly reliable in Washington, it’s the state’s second largest renewable energy generation contributor with over 3,000 megawatts of installed capacity (U.S Energy Information Administration, 2017). This can be compared to the 6,910 megawatts of hydroelectricity generated Washington net electricity (U.S. Energy Information Administration – EIA – Independent Statistics and Analysis, 2017). Wind energy is also relied upon as a common renewable resource of choice to meet renewable energy legislation requirements (American Wind Energy Association, 2014).

New wind turbine farms to replace the hydroelectric dams can be installed by PSE (Pudget Sound Energy), the largest Northwest utility producer of renewable energy (Hopkins Ridge Wind Facility). They own and operate the large wind farms including the Hopkins Ridge Wind Facility located in Columbia County (Hopkins Ridge Wind Facility). The Hopkins Ridge Wind Facility started in 2005 and consists of 87 turbines  producing an average annual output of about 465,000 megawatt hours, sufficient to power 41,000 households (Hopkins Ridge Wind Facility). If more winds farms like Hopkins Ridge Wind Facility were developed to help the state of Washington develop more wind energy, the people of Washington wouldn’t need the hydroelectric power provided by the dams and they could be removed to help prompt orca and salmon population recovery.

The best possible solution for this issue is to harness and develop more wind energy in the state of Washington. This energy replacement will allow for the dams to be removed without depriving the people of Washington of electricity. Being able to remove these dams is critical for the survival of the salmon population within the Columbia and Snake rivers. Sustaining the salmon population is critical for the survival of the southern resident orca population (a beloved tourist attraction in the state of Washington). Saving the salmon population will also help the National Marine fisheries service in achieving the recovery plan outlined for southern resident orca whales in 2008 (National Marine Fisheries Service. 2008).  In short, finding an alternative renewable energy source to replace the dams on the Columbia and Snake rivers is imperative for the survival of the salmon and orca whale populations affected by these dams. Lolita the orca was taken from this population and is now suffering as a result (Save Lolita, n.d.; WDC, 2017). She serves as an example of how hard captivity is for orcas and why preserving the southern resident population in the wild is their only true chance for survival.

AUTHORS

Marilyn Donovan – Animal Science: Pre-vet

Lauren Baldwin – Environmental Science

Connor Taylor – Environmental Science

REFERENCES

Allen, M. B., Engle, R. O., Zendt, J. S., Shrier, F. C., Wilson, J. T., & Connolly, P. J. (2016).  Salmon and steelhead in the white salmon river after the removal of                   Condit Dam–Planning efforts and recolonization results. Fisheries, 41(4), 190-203. doi:10.1080/03632415.2016.1150839

American Wind Energy Association. (2014, August 12). State wind energy statistics: Washington. Retrieved from http://awea.files.cms-plus.com/FileDownloads

             /pdfs/washington.pdf

Barker, R., & Peterson, B. (2017, July 10). Fate of the Pacific Northwest orcas is tied to having enough Columbia River salmon. Retrieved November 05, 2017, from

                http://www.tri-cityherald.com/news/local/article160618424.html

Bogaard, J. (2017). Why Remove The 4 Lower Snake River Dams? Retrieved November 30, 2017, from http://www.wildsalmon.org/facts-and-information/why-

                remove-the-4-lower -snake-river-dams.html

Bonneville Power administration , U.S. bureau of reclamation, U.S. army corps of engineers. (2001, April). THE COLUMBIA RIVER SYSTEM INSIDE STORY.                       Retrieved November 13, 2017, from https://www.bpa.gov/power/pg/columbia_river_inside_story.pdf

Claeson, S. M., & Coffin, B. (2016). Physical and biological responses to an alternative removal strategy of a moderate‐sized dam in Washington, USA. River                             Research and Applications,  32(6), 1143-1152. doi:10.1002/rra.2935

Conca, J. (2016, December 01). Will Removing Large Dams On The Snake River Help Salmon?  Retrieved November 05, 2017, from                                                                         https://www.forbes.com/sites/jamesconca/2016/11/29/  will-removing-large-dams-on-the-snake-river-help-salmon/#6a09e204155b

Edmunds, D. R. (2014, October 27). Study: Wind Turbines are ‘Expensive, Unreliable and  Inefficient’. Retrieved November 30, 2017, from                                                           http://www.breitbart.com/london/2014 /10/27/government-is-whistling-in-the-wind-on-practical-case-for-wind-power/

Effects of Elevated Water Temperatures on Salmonids. (2000, July). Retrieved December 3, 2017, from                                                                                                                            https://fortress.wa.gov/ecy/publications/publications/0010046.pdf

Ford, J. K., Ellis, G. M., Barrett-Lennard, L. G., Morton, A. B., Palm, R. S., & Iii, K. C. (1998). Dietary specialization in two sympatric populations of killer whales                     (Orcinus orca) in coastal British Columbia and adjacent waters. Canadian Journal of Zoology, 76(8),  1456-1471. doi:10.1139/cjz-76-8-1456

Ford, J. K., Ellis, G. M., Olesiuk, P. F., & Balcomb, K. C. (2009). Linking killer whale survival and prey abundance: food limitation in the oceans apex predator?                         Biology Letters, 6(1), 139-142. doi:10.1098/rsbl.2009.0468

Grace, S. (2015, September 29). Economic Value. Retrieved November 26, 2017, from  https://srkwcsi.org/the-economic-value-of-southern-resident-killer-                               whales/

Harrison, J. (2008, October 31). DAMS: IMPACTS ON SALMON AND STEELHEAD.  Retrieved November 14, 2017, from                                                                                           https://www.nwcouncil.org/history/DamsImpacts

Harrison, J. (2016, May 4). ENDANGERED SPECIES ACT AND COLUMBIA RIVER SALMON AND STEELHEAD. Retrieved November 14, 2017, Retrieved from                   https://www.nwcouncil.org/history/EndangeredSpeciesAct

Herrera, C. (2017, June 7). Lolita’s tank at the Seaquarium may be too small after all, a new USDA audit finds. Retrieved December 01, 2017, from                                                  http://www.miamiherald.com/news/business/article154928954.html

Hopkins Ridge Wind Facility. (n.d.). Retrieved November 30, 2017, from https://pse.com/aboutpse/EnergySupply/Pages/Wind-Power.aspx

Lower Granite Adult Fish Ladder Temperature Improvement System. (2016, May 25). Retrieved  December 3, 2017, from                                                                                                                                                                                                                                                                                                                                        http://.nww.usace.army.mil/Portals/28/docs/programsandprojectsandprojects/Granite%20temp%20Improvement/FS_160525LowerG_LadderTempImprovementFinal.pdf 

National Marine Fisheries Service. (2008). Recovery Plan for Southern Resident Killer Whales

                 (Orcinus orca). National Marine Fisheries Service, Northwest Region, Seattle,Washington.

Nijhuis, M. (2014, August 27). World’s Largest Dam Removal Unleashes U.S. River After

                 Century of Electric Production. Retrieved December 3, 2017,from https://news.

                 nationalgeographic.com/news/2014/08/140826-elwha-river-dam-removal-salmon-science-olympic/

NOAA Fisheries. (2015, January 08). Killer whale (Orcinus orca). Retrieved December 02,

                  2017, from http://www.nmfs.noaa.gov/pr/species/mammals/whales/killer-whale.html

O’Connor, S., Campbell, R., Cortez, H., & Knowles, T. (2009). Whale Watching Worldwide: tourism numbers, expenditures and expanding economic benefits, a                       special report from  the International Fund for Animal Welfare, Yarmouth MA, USA, prepared by Economists at Large. Retrieved from                                                   http://www.ifaw.org/sites/default/files/whaleWatchingworldwide.pdf

O’Malley, M. F., (2005). Wildlife Viewing Recreation: Economic Stimulant and Habitat Protection Tool. Retrieved from                                                                                                 http://depts.washington.edu/uwconf/2005psgb /2005proceedings/papers/E10_OMALL.pdf

Save Lolita, Raising Awareness for Lolita the Orca. (n.d.). Retrieved December 1, 2017, from https://www.savelolita.org/

The Salmon Life Cycle. (n.d.). Retrieved December 03, 2017, from https://www.nps.gov/olym/learn/nature/the-salmon-life-cycle.htm

U.S Energy Information Administration. (2017, November 16). Washington – State Energy

                  Profile analysis – U.S. Energy Information Administration (EIA). Retrieved from https://www.eia.gov/state/analysis.php?sid=WA

U.S. Energy Information Administration – EIA – Independent Statistics and Analysis. (2017, July). Retrieved December 03, 2017,

                   from https://www.eia.gov/state/?sid=WA#tabs-4

WDC. (2017). The Fate of Captive Orcas. Retrieved December 01, 2017, from http://us.whales.org/wdc-in-action/fate-of-captive-orcas

The Effects of Sunscreen on Coral Reefs

As coral bleaching continues, scientists and marine biologists   become desperate to preserve these natural wonders.

Coral reefs are known for their extreme beauty. From their vast array of shades in red, orange and pink, coral reefs have caught the eyes of millions for countless decades. Coral reefs much like The Great Barrier Reef provide food and shelter for numerous marine species. From sea sponges and anemones, to fish and crustaceans, sea turtles and even sharks, coral reefs provide housing, food and successful reproduction opportunities for all who inhabit it (SeaWorld Entertainment, S. P., 2017). Stretching 2,600 kilometers and containing over 900 islands The Great Barrier Reef is the world’s largest reef ecosystem (“Facts About The Great Barrier Reef”, n.d.). Unfortunately, as tourists from all areas of the world continue to visit, discover and explore these natural wonders, their presence causes deterioration and possible extinction of these coral reefs. These natural beauties, although resourceful and essential, can be extremely sensitive and fragile through exposure to environmental pressures. All populations within the reef ecosystem are interdependent and a part of a global food web. A thriving coral reef is beneficial to humans, aquatic plants, fish and other organisms but coral reefs are at risk due to tourism. Due to this risk the organisms that inhabit these reefs are exposed to danger through the possibility of losing shelter, thus exposing them to predation, and possible population decline. Coral reefs that are especially at risk are those in the Florida Keys and Hawaii. These reefs, although not as large as the Great Barrier Reef, are vital to the ecosystem in which they live and are at significant risk due to being heavily visited by tourist. Through their routine of sunscreen application, tourist successfully protect themselves from harmful UV rays but ironically and ignorantly pose a significant threat to the very reefs they seek to enjoy. Continue Reading

America’s Proposed Border Wall: Effective or Deadly?

Donald Trump ran his campaign with the promise of significantly stopping illegal immigration by building a concrete border wall.

The 2016 presidential election, as highlighted by republican candidate Donald Trump, saw the rise in the desire for a U.S.-Mexico border wall among American voters.  The reason for building a wall is to prevent immigrants from illegally entering the United States. One of the largest misconceptions is the negative association between immigrants and crime rates (Jones, 2012).  However, almost all crimes committed in the U.S. were by citizens, not illegal immigrants (Carson & Anderson, 2016).  The main crimes committed in the United States by illegal immigrants include drug trafficking, rape, assault, reckless driving, and driving under the influence (Federation for American Immigration Reform, 2017).  However, Carson and Anderson (2016) state that only about 5% of inmates in the state and federal prisons consist of noncitizens.  This means American citizens account for 95% of the crimes committed in the United States. Of the total, only 1.67% are noncitizen federal inmates in prison for immigration offenses (Carson & Anderson, 2016 p. 33). In former president Barack Obama’s keynote speech, he discussed current crimes rates and illegal immigration, and stated that the illegal immigration and crime rates are lower than they have been in decades (Emery, 2016).  

Continue Reading

Save the Shearwater: Feral cats pose a threat to island bird species

 

 

Masses of Yelkouan Shearwaters swarm the islands of the Mediterranean Sea in search of old lovers and new lovers during the start of the new breeding season in November. Known as wind chasers, these gray and white birds silently coast the surface of the sea until they hit land and finally begin their cackling breeding calls. Veterans of the breeding ritual pursue their mate of previous years while new birds start the quest for a lifelong partner. Once they find each other, Shearwater couples reacquaint themselves and continue the works of Mother Nature, laying one golden egg per mating pair. For the next couple of weeks both parents take turns incubating the egg and flying out to sea in search for food (Raine, n.d.). Once the babies hatch, this becomes an almost impossible task, leaving the Shearwaters exhausted from the care of their offspring. With fatigue weighing down their wings and their spirits, Shearwaters easily fall victim to ecological problems like the introduction of predators. Unfortunately, due to these problems, Yelkouan Shearwater populations are in steady decline and are now listed as vulnerable to extinction by the International Union for Conservation of Nature (BirdLife International, 2016).

Continue Reading

Wildlife and the Trump Border Wall

 

With one graceful leap out of the water, the jaguar latched on to the neck of its victim and surrendered it unconscious using its powerful jaw. The crocodile was in complete and utter alarm due to the incredible hunting abilities of the jaguar (National Geographic, n.d.). Today it is a rare to witness this breathtaking species in the southwestern United States. The jaguar is currently listed in the United States as one of the most imperiled species because of a predator removal program in the 1900’s that treated jaguars as game (Eisenberg, 2014). In 2016 a jaguar was spotted in Arizona, providing hope that a few jaguars may be established in the southwestern U.S. This sighting suggests that the animal crossed the border from Sonora, Mexico to the U.S. This jaguar, now known as El Jefe, may be one of the last remaining jaguars in the U.S, creating an urgent need for conservation of this iconic species in the borderland regions (Bruillard, 2016). El Jefe was photographed north of the border when he likely crossed through a small gap in the border wall to get to the Huachuca Mountains in southeastern Arizona (Schyler, 2017). Continue Reading