Dealing with Coal Mining Effects

In an area of lush green wildlife and rolling mountains, disaster plagues the lives of many who live in the Adirondack area. Not only does mountaintop removal destroy the beautiful landscape that many residents treasure, but it leaves these people with alarming conditions everyday. Maria Gunnoe of Bobwhite, West Virginia, raised by a coal mining family and left land to raise her own family on, lives in constant fear of a disaster waiting to happen. Due to a mountaintop removal project launched in 2000, Maria’s property flooded 7 times in 3 years, even washing away the access bridge to her street and the family’s dog. Because of the threatening conditions, Maria has stated that her children go to sleep prepared to be ready at a moment’s notice to leave their house whenever heavy rain ensues. Now living in a community wrecked by land degradation and poverty, Maria cannot afford nor find anyone to buy her property and cannot provide her family with simple resources, such as clean water (Palone, 2013). Rather than fleeing and giving her community over to the coal companies, Maria is a leader in the movement to end mountaintop removal and organizes to strengthen legislation that is supposed to protect her rights. “This is absolutely against everything that America stands for. And I know that we have better options than this. We do not have to blow up our mountains and poison our water to create energy. I will be here to fight for our rights. My family is here, we’ve been here for the past 10 generations, and we’re not leaving. We will continue to demand better for our children’s future in all that we do” (Mountain Heroes: Maria Gunnoe, 2012, p. 1).

Continue Reading

Green Roofs Effects on Urban Environments



Green roof, in France

Isabelle Kendall, Hasan Sabri & Bailey Michell

People over 65 make up a significant portion of the United States population, and the number increases every year. By 2040, the amount of people 65 and older in our population will go from 41 million to around 80 million (Kenney, Craighead, & Alexander, 2014, p. 6). This demographic is at great risk for heat related illnesses and death due to the increasing heat indices of our planet (Conti et al., 2005). A heat index is what the combination of temperature and humidity feel like to human beings, and as temperatures rise so do indices (National Oceanic and Atmospheric Administration [NOAA], 2016). Although the elderly are the most afflicted by heat induced mortality, it can happen to anyone: young or old, rich or poor. Heat waves in Chicago, Tokyo and many other cities have caused fatalities among a variety of individuals. For instance, in the summer of 2003, over 70,000 Europeans passed away during a single heat wave (Knox, 2007). Heat waves are becoming more frequent and more devastating. During a heat wave in Chicago there were nearly 700 more heat related deaths recorded than during a heat wave one year before (Whitman et al., 1997). The increased temperatures that lead to heat related fatalities and other heat related injuries are caused by the expansion of cities across the globe, and more specifically, the materials used to construct these expansions. Materials used include gravel, cement, and asphalt. These impermeable substances that make up urban surfaces like sidewalks, roads, and traditional buildings’ roofs absorb and retain solar radiation during the day then release heat gradually at night increasing surrounding air temperatures into the next day (Knox, 2007). This temperature phenomenon is called the urban heat island (UHI) effect because it causes temperatures in urban areas to be much higher than those in the rural areas around them (Environmental Protection Agency [EPA], 2016). During summer months, the surface of a conventional roof can be as much as 50 º C (90 º F) hotter than ambient air temperatures (Liu & Baskaran, 2003). An article from the Population Reference Bureau (PRB) states that in the 1800s, only three percent of the world’s population lived in cities. By 2008, half of the global population lived in cities, and by 2050, almost 70% of the world’s population will be urbanized (Population Reference Bureau, n.d.). Since the population is continuously growing, it is plain to see that any problems facing cities now will affect a staggeringly larger proportion of people over time. Thus, finding solutions to those problems like heat waves, which occur most frequently in cities, will be an integral part of future city living. Continue Reading

Polyculture (IMTA), a better way to produce fish


Aquaculture of the Future

Kendall Sarapas – Natural Resource Conservation Wildlife

Alexis Duda – Sustainable Food & Farming

Aaron Johnson – Building and Construction Technology

The fishing industry has been important since the dawn of mankind, being a rich and reliable food source. One of my first fishing voyages was with my grandpa on his boat in the sea. He was an avid fisherman who went fishing quite often. I caught my first salmon on his boat which made me want to explore the world of salmon. As soon as I saw the tip of the fishing pole point down towards the water I ran over. I started reeling in what felt like a ton of bricks on the other end dragging me to the side of the boat. I clenched on to that pole with all of my strength and reeled in the massive salmon very slowly. The weight of the fish on the hook squirming around below the water was a struggle for any ten year old to handle. My grandpa came running over and helped me reel in the salmon. That weekend we chopped up the salmon and cooked it for dinner. After that first salmon was caught, I needed to know more about their way of life. Continue Reading

The Effects of Snow Removal on the Environment


Murphy, K. (2014). Crews load salt into a plow truck in Salt Lake City on Nov. 13.[Photograph].

Jeremy Chaitin, BCT. Brennah Beaupre, Wildlife . Dakota Horton, Horticulture.


What Happens To Road Salt Come Winter’s End?

Science reporter Joseph Stromberg (2014) said, “It’s estimated that over 22 million tons of salt are scattered on the roads of the U.S. annually- about 137 pounds of salt for every American” (p.1). Just like Stromberg (2014) we propose the question, Where does it go after that? When looking at road salt as a product it seems so harmless, all it does is melt ice for our convenience and safety. Besides its convenience, what about when the salt is washed away come springtime and the salt ends up drifting into the water and wetlands? Doesn’t 137 pounds per person seem a bit excessive and wasteful? According to Ramakrishna & Viraraghavan (2005) “[A]pproximately 9 to 10 million tons of sodium chloride, 0.3 million tons of calcium chloride and 11 million tons of abrasives are used annually. Highway salting rates range from 400 to 800 pounds of salts per mile of highway per application, and many roads annually receive more than 50 tons per mile” (Ramakrishna,D.M. & Viraraghavan,T. (2005), p 50). Those numbers make it clear that road salt is used in large, excessive quantities.

The department of public works in your respected city, county,or state executes snow removal in your area. Their job is to clear roadways and make them safe for public access before, during, or after a storm. Sometimes there is so much snow that the snowfall begins to affect homes and not only the roads.

Continue Reading

The Effect of Pesticides on Water Quality

By Jessica Kuhr (Geology), Mallory Larcom (NRC), and Laura Noe (Animal Science)

Agricultural Pesticides: Worth the Risk?

Limoeiro do Norte, Brazil, was once known only for its poverty— but in the 1990’s, the town was dragged up from destitution by an influx of agricultural industry. The growth of farming in this remote countryside city brought new jobs and fresh starts to the people who lived there, however there were darker side effects as well. July of 2008 marked the beginning of a descent into hell for one citizen of Limoeiro do Norte and his family. Vanderlei Matos da Silva, an employee of  Fresh Del Monte Produce, began to complain of headaches, fever, and jaundice that summer, and his condition continued to deteriorate in the following months, making him unable to work and eventually forcing him into a hospital in the city, miles away from his home and family (Prada, 2015).

By the time his wife and infant son were ringing in a new year, Silva had succumbed to multiple organ failure and hemorrhaging; a man who had been a healthy, loving father and husband less than six months before now lay dead after a long and painful fight for his life. Fresh Del Monte Produce was taken to court by Silva’s widow, and testimony began to unravel a story of hazardous working conditions and cover-ups, as well as the use of a pesticide which, though legal in Brazil, has been banned in numerous countries and it considered to be “highly poisonous” by the U.S. Centers for Disease Control. In 2013, five years after the death of Vanderlei Matos da Silva, Fresh Del Monte Produce was ordered to pay $110,000 in damages to his widow to atone for her husband’s untimely death (Prada, 2015). Continue Reading

An Analysis of Constructed Treatment Wetlands to Purify Coal Slurry

 Simone Knowlden, Timothy Ryan, Michael O’Donnell


If Big Coal’s reputation did not already precede itself, recent high profile cases have been surfacing more evidence of the industries malpractices. Earlier this year, the nation sympathized with 300,000 West Virginians when headlines revealed that 4-methylcyclohexane methanol (MCHM), a chemical used to clean coal, was leaked into the Elk River, contaminating their drinking water supply (Dizard, 2014). One month later, a reported 100,000 gallons of coal slurry flooded Fields Creek, through a valve malfunction by Patriot Coal (Conlon, 2014). The stark truth is that these are not isolated incidences, the coal industry has been inundating watersheds with toxic waste throughout Appalachia since the 19th century; degrading their single most essential resource, water. Poor enforcement of already lenient regulations has given many coal preparation plants the freedom to utilize unsafe disposal methods. America’s dependency on coal-powered energy has degraded regions like West Virginia for the sake of cheap energy. In a fiscally driven industry market incentives and more stringent regulations, along with constructed treatment wetlands could be a temporary concession.

Continue Reading

Hydraulic Fracturing: Development of Specialized Wastewater Treatment Facilities

A hydraulic fracturing site from a distance. Retrieved from: Apr 29 2014

Domestic natural gas extraction is quickly becoming a point of contention in modern day America. The method used to extract natural gas is known as hydraulic fracturing. As our nation turns towards a greener way to provide energy, natural gas offers an alternative energy source that releases far less carbon during combustion compared to oil and coal. Undoubtedly natural gas extraction provides Americans with jobs and boosts local and national economies, while decreasing our nation’s dependence on foreign fossil fuels. Initially it is easy to see why people are becoming excited about domestic natural gas, however if you dig deeper you will see that there is a dark side to this industry. There are countless horror stories of people who have leased their land to natural gas companies for financial gain and in return are plagued by the toxic nature of the industry. Among other things, hydraulic fracturing is especially detrimental to water quality. Water is an absolute necessity for all life on earth, and freshwater accounts only for 3% of the total water on earth, most of which is locked up in ice or in underground aquifers (National Oceanic and Atmospheric Administration, 2013). Therefore, it is important to understand the process of hydraulic fracturing and how it negatively affects our fragile and limited water supply.

Continue Reading

Constructed Wetlands: Dealing with the Stressors of Modern Society


Constructed Wetlands: Dealing with the Stressors of Modern Society

Ben Lagasse, Abbey Massaro, Alex Mauro

NATSCI 397A Professional Writing

University of Massachusetts Amherst

Evan Ross

December 5, 2013



           Wetlands at one point covered 220 million acres of the countries landscape (North American Bird Conservation Initiative, 2013, p. 7). This historic base of natural wetlands was relentlessly destroyed in the recent past to make way for commercial development, agricultural development, and construction of infrastructure for a growing country. As the human footprint continues to crawl across the landscape we continue to lose natural wetlands at an alarming rate. It is known that as of 1984, 54% of the countries natural wetlands had been drained or filled for development or agriculture. 2/3 of the countries remaining natural wetlands are privately owned, whether they ultimately end up being preserved or developed is uncertain (North American Bird Conservation Initiative, 2013, p6).

Continue Reading