The Future of Sustainable Aquaculture

Atlas of The Future’s Aquapod stationed in Mexico’s Sea of Cortez

Florinda Cardoso- Natural Resources Conservation

Lauren Moura- Animal Science

Louie Huang- Building Construction Technology

Trevor Mackowiak- Environmental Sciences


From grilling it at home to ordering a fancy sushi platter, seafood is a versatile and staple protein for many diets around the world and is growing in demand as the world’s population increases. As demand increases, commercial fisheries become more industrialized, and the industry is heavily reliant on artificial aquaculture systems to raise fish such as salmon. History has shown us time and time again that industrialization often comes at the cost of our ecosystems. We do not want history to repeat itself as we tackle the issue of feeding our growing population. However, in its current state of onshore, shallow water fisheries, salmon aquaculture may be leading environmental degradation.

We all know that animals produce waste, and dealing with said waste is an integral part to any form agriculture. The same applies to the salmon raised in aquaculture operations. The waste they produce, known as effluent waste, is a combination of fecal matter and excess feed, which eventually settles on the floor causing sediment enrichment of carbon and nitrogen (Holmer et al., 2005, p. 183). Ecosystems usually have the natural ability to recycle these nutrients out of the sediment and disperse it back into the surrounding environment, though this process only works up to a certain capacity. If the rate of nutrient addition is greater than recycling in the ecosystem, the nutrients accumulate and result in negative impacts. (Holmer et al., 2005, p. 194). This affects us by contaminating our shores where we indulge in recreational activities such as fishing, enjoying the beach, etc., resulting in areas on shore being closed off from public use.

Current aquaculture systems in the United States are typically found near shore. Salmon farmers house their fish in pens that float on the surface of the water. These pens can be 90 feet across and 60 feet deep, and they can hold tens of thousands of salmon which clearly produce a lot of waste (Foley). The large volume of these near shore pens contribute to the sediment enrichment issue. With the pens reaching a depth of 60 feet, the bottom of the pens are close to the floor of the shallow waterways in which they are located. With such minimal distance between the pen and the floor of the waterway, there is little water flow to carry waste away from the vicinity and it all settles within a short distance of the pen. Over time the waste accumulates to unsustainable quantities.

The degree of pollution can be measured by total nitrogen (TN) and total organic carbon (TOC). Elevated levels of TOC and TN indicate that the body of water in question is polluted by effluent waste (Whitehead, 2018). Bannister et al. (2014) measured the TOC levels in the sediments immediately below salmon cages at near shore facilities, compared with the levels at reference locations. They concluded that TOC levels were 50% higher in the sediment at the farming locations than they were at the reference sites (Bannister et al., 2014, p. 41). The study concluded that sediment in the immediate vicinity of the cages was significantly more polluted than the sediment at the reference locations (Bannister et al. 2014).

The biggest impact that effluent waste from salmon farms has on sediment composition stems from the process of eutrophication, which has negative effects on aquatic wildlife and vegetation. Eutrophication is when a body of water receives an excess of nutrients typically from residential life, urban runoff, or agricultural practices like aquaculture operations (Bowman et al., 2017, p.  249). The excess nutrients disposed into the water from salmon aquaculture systems benefit some primary producers, allowing them to reproduce at a high volume which cause algae blooms. That said, this abnormal volume of algae is not sustainable, and the algae will eventually die. Bacteria feed on this dead organic matter and use dissolved oxygen to do so. Since there is a lot of dead algae, bacteria will feed rapidly while simultaneously using up dissolved oxygen in the water.  The decrease of dissolved oxygen leads to the death of many other aquatic organisms in the area. This change in abundance of primary producers negatively influences species higher up the food chain which will result in a decrease in populations of vegetation and various fish species (NOAA, 2018).

Eutrophication is triggered if the TN concentration of the waterway exceeds 0.80mg/L (Xu et al., 2015, p. 1051). The Changshou Reservoir in China experienced a high level of eutrophication and Sheng et al. (2006) concluded that it was due to the reservoir’s above average density of salmon aquaculture operations. They measured the concentration of TN in the reservoir during the month of October from 1999 to 2001 and found the average level it to be 2.32mg/L (Zhang et al., 2006, p. 93). This level of pollution exceeds the capabilities of the ecosystem to recycle these nutrients, and eutrophication became increasingly likely.

While eutrophication may seem like soley an environmental issue, it has the potential to cause major economic losses. Eutrophication causes fish kills, which can decrease the fish stock significantly or, in the most extreme cases, removes them from ecosystem entirely. Such an event happened in Hong Kong in 1998. Eutrophication wiped out 90 percent of the entire stock of Hong Kong’s fish farms and resulted in an estimated economic loss of $40 million USD (Eutrophication and Hypoxia Impacts). Similarly, in the 1980’s the Black Sea ecosystem was in decline due to eutrophication. The increase in nutrients combined with fairly shallow water lead to massive fish kills. This left the ecosystem susceptible to disturbances which ultimately lead to extensive losses in Turkish fishing industries (Bowman et al., 2017, p. 250). In order to protect the economic performance of nations which rely on aquaculture, eutrophication must be kept to a minimum.

If aquaculture farms are planned with the recycling capacity of the ecosystem in mind, nutrient enrichment can be greatly diminished. While conventional aquaculture practices produces waste that results in nutrient enrichment of sediment (Carroll et al., 2003, p. 173), an emerging practice known as offshore aquaculture could be the solution. Offshore aquaculture is the practice by which cages made up of nets are placed 3-200 miles offshore (NOAA, 2016) in depths ranging from 82ft-328ft (Kapetsky, Aguilar-Manjarrez, & Jeness, 2013, p. 3). As depth of the waterway increases, the rate of the current does as well. As the rate of the current increases, there is greater dispersion of organic nutrients (Gentry et al., 2016). Carroll et al. (2003) recorded the current speeds at varying depths of salmon farms and found that at depths of less than 82ft the current speed was less than 1.2in/s, depths between 82ft and 164ft the current speed was 1.6in/s-2.4in/s, at depths between 164ft and 246ft the current speed was 2.8in/s-3.9in/s, at depths of greater than 246ft the current speed was 3.9in/s-9.8in/s. They measured the TOC at the varying classes and found that the higher the depth and current speed the lower the TOC. For example, salmon farms at depths less than 82ft had TOC levels between 34mg/g and 41mg/g, while farms at depths greater than 246ft had TOC levels of less than 20mg/g (Carroll et al., 2003, p. 169). By planning the facilities offshore, and therefore at greater depths, water currents around the facilities are much greater than when compared to inshore farms . This allows the settling of effluent waste to spread out over a larger area, thus keeping the sediment composition directly below the farms from becoming heavily polluted (Gentry et al., 2016, Carroll et al. 2003). By increasing the dispersal range of effluent waste, biological life around the farms are better able to naturally recycle the nutrients. With less polluted waters and adequate dissolved oxygen, all fish are able to live healthier lives.

In order to raise fish in open waters, designers have to make a cage that is able to withstand the force of open ocean waves (Arnold, 2006). Companies like InnovaSea have achieved this and already began capitalizing on the offshore structures, their SeaStation and Aquapod (Innovasea, n.d) offer two options for aquaculture farmers. The Aquapod is a spherical arrangement of triangular net panels fastened together that allows the pod to withstand a variety of conditions and hold a diversity of species (Innovasea, n.d).  This fish farm pod looks like something out of a sci-fi movie, whereas the SeaStation appears to be a more conventional and cost effective solution. China recently constructed a farm similar to InnovaSea’s SeaStation, the structure is 125 feet high, holds 1.76 million cubic feet of volume, and can generate 1,500 tonnes of salmon per season (every 2 years) (Tang, 2018). The cage is planned to be installed in the Yellow Sea, 130 nautical miles east of Rizhao (Tang, 2018) and the depth can be adjusted from 13-164 feet accordingly to optimal temperature conditions for the salmon and effluent waste dispersal (Tang, 2018). Estimates show that offshore aquaculture in the Yellow Sea will support a $15.7 billion industry (Tang, 2018) and will ease pressures on near shore farming (Tang, 2018).

The United States was ranked number 1 in global offshore aquaculture development potential by the Food and Agriculture Organization for The United Nations (Kapetsky, Aguilar-Manjarrez, & Jeness, 2013, p. 26) The ranking is on the basis of ocean areas encompassing 2-300 miles away from the shoreline of the country’s land masses with suitable depths, current speeds, and cost effectiveness based on travel time and accessibility (Kapetsky, Aguilar-Manjarrez, & Jeness, 2013, p. xv). We urge that the United States develops a process for developing offshore aquaculture in our homewaters. Failure to set up the proper framework for offshore aquaculture development will result in loss of a massive economic opportunity, damage to the environment, and a higher potential for unregulated seafood. Allowing effluent waste to disperse in offshore waters will spread the waste in a greater area rather than it being condensed onshore. You may now be thinking of the popular propaganda slogan from the 1970’s, “the solution to pollution is dilution.” In many cases this slogan is inaccurate but in this case it can be taken with a grain of salt. With the waste from salmon aquaculture systems spread over a greater area, a greater amount of biological life is able to naturally recycle the contaminants out of the water system.

In 2015 the average United States citizen ate 15.5 pounds of fish (Gewin, 2017) and in 2016 the United States imported more than 2.5 million tons of edible fish (Lester et al., 2019) that amounts to 90% of the market value, half of that coming from aquaculture in other countries (Lester et al., 2018). The U.S. exports half of its wild caught seafood (Knapp & Rubino, 2016, p. 214) though even if it did not export, the supply would be insufficient for the domestic market (Knapp & Rubino, 2016, p. 214). The United States fish consumption has gone up while its amount of catch has remained the same (Gewin, 2017) this has become a global trend. The World Bank predicts that by 2030, two-thirds of fish eaten will have come from aquaculture (GreenBiz).  The United States is home to the highest area of cost effective land for offshore aquaculture (Kapetsky, Aguilar-Manjarerez, & Jeness, 2013, p. 26) when compared on a global scale and should seek to use it to its advantage.

To ensure the development of American aquaculture movement is sustainable, streamlining of the regulatory process for establishing deepwater aquaculture operations must be prioritized. This makes it easier for businesses to establish these farms from the beginning. Offshore aquaculture operates 3-200 miles offshore (NOAA, 2016) while the federal Exclusive Economic Zone encompasses 3-200 miles offshore (Lapointe, 2013, p. 1), this means that offshore operations occur in federal waters, here is where things become cloudy as to who is responsible for regulating offshore aquaculture.

In order to allow the development of offshore aquaculture in the United States to create a sustainable source of food, the permitting process has to be streamlined to allow easy entrance into the market. There have been previous attempts to streamline the process, the National Offshore Aquaculture Acts of 2005 and 2007 which both failed to pass in congress (Lester et al., 2018). These acts granted the Secretary of Commerce the right to establish a permitting process for the development of offshore aquaculture in the U.S. waters (Congress, 2007). Due to this the current process for entering the offshore aquaculture is unclear and unstable, which scares investors away from what could possibly be an incredible investment. The federal government allocated NOAA permission to grant permits for up to 20 offshore aquaculture farms in the Gulf of Mexico (Gewin, 2018) in January of 2016. Though in 2018 the permits were ruled unlawful in court because they go beyond NOAA’s legal reach (Center for Food Safety, 2018).  When writing the permitting application, NOAA described the offshore aquaculture farms as fishing, which is their responsibility, though plaintiffs argued that aquaculture is more farming than fishing (Center for Food Safety, 2018). These court results promulgated that under current federal law, the development of offshore aquaculture in the United States is not permitted (IntraFish Media, 2018). This means a new regulatory process is imperative to allow potential offshore aquaculture farmers to develop their farms in the United States’ waters.

There are three government agencies involved in the offshore permitting process (Gewin 2017), including the National Oceanic and Atmospheric Administration (NOAA) (NOAA, 2017), U.S. Army Corps of Engineers (USACE), and the U.S. Environmental Protection Agency (EPA) (NOAA, 2017). NOAA has assumed the role of permitting any offshore aquaculture farm, currently in The Gulf of Mexico. In 2016 NOAA was alloted to permit 20 offshore aquaculture operations (NOAA, 2018), though in 2018 the permits were repealed before even being distributed (IntraFish Media, 2018). The USACE grants permits that protect the navigable waters of the U.S. (NOAA, 2017) while the EPA is totally different, they permit the discharge of pollution from an offshore aquaculture operation (NOAA, 2017). A potential offshore aquafarm might meet the USACE and EPA qualifications, though it is still not allowed to start its operations until NOAA receives approval to distribute permits.

There are also four government agencies involved with the authorization of offshore aquaculture operations. This includes the Bureau of Ocean Management (BOEM), the Bureau of Safety and Environmental Enforcement (BSEE), the U.S. Coast Guard (USCG), and the U.S. Fish and Wildlife Service (USFWS) (BOEM, 2017).

One alternative for offshore aquaculture is to repurpose old fossil fuel rigs which provide the benefits of: the availability of large volumes of good-quality water, reduced user conflicts, increased employment, and decreased reliance on foreign imports (BOEM, 2007), but require cooperation from all four agencies. The BOEM authorizes the right to use for offshore operations that use an existing federal outer continental shelf facility (NOAA, 2017). The BSEE authorizes proposed activities that convert oil and gas facilities to a new purpose (NOAA, 2017). BSEE started an initiative in the mid 1980’s called the Rigs to Reef program to repurpose old fossil fuel rigs and can be used to promote offshore aquaculture (Rigs to Reef, n.d). While the U.S. Coast Guard authorizes that the proposed facilities will have the correct lights and signals that allow for safe maritime navigation (NOAA, 2017). The U.S. Fish and Wildlife Service authorizes that proposed actions are in compliance with all fish and wildlife laws including The Fish and Wildlife Conservation Act and the Endangered Species Act (NOAA, 2017). The difficult part for the company is that every agency has different permit applications and periods. Companies could possibly receive approval from one agency, but get denied by another for a specification, extending the permitting process and making it complicated.

The proposed offshore aquaculture policy is a win-win in the political system, the Trump administration has already expressed in favor of expanding aquaculture in America (Gewin, 2017). Not only is offshore aquaculture a potential big money business for the United States and a chance to reduce our reliance on foreign imports, by moving the farms away from zones near the coast that harbor habitats that are more susceptible to damage from aquaculture like coral reefs (Gentry et al., 2016) and mangrove forests (Porchas & Cordova, 2012) the environmental impacts are far less than on-shore farms (Lester et al., 2018). With proper spatial planning, the offshore farms will have minimal environmental impact and a high yield of fish (Grewin, 2017) which appeals to both the conservative and liberal voters, in the sense that it is environmentally friendly and generates revenue.

With all this being said offshore aquaculture is not the only option for raising farm fed fish while reducing environmental impacts. Alternatives like recirculating aquaculture systems are either on-shore or on-land and physically separate the fish farm from the source water with a tank (Cermaq, 2012). The water is pulled from the source (typically the ocean) and circulated through the tank, when water exits the tank it passes through a filtration system that removes effluent wastes (Cermaq, 2012).  Though other problems arise from these systems like the battle for land use and the intense amount of energy needed to power these systems.

More than 40% of the world’s population lives no more than 62 miles away from the coast (Turcios & Papenbrock, 2014, p. 837) which must be planned to allow for the best use of space (Holland, 2010). In Croatia which has been praised for its successful spatial planning policy (Holland, 2010) the beautiful beaches have caused the rapid expansion of the tourism industry, taking away potential land for aquaculture farms, leading farmers to look offshore (Holland, 2010). While beaches are becoming crowded with umbrellas and aquaculture a massive area of the world is being ignored; the areas 3-200 miles off coasts. A study by the University of California-Santa Barbara found that if aquaculture were developed in only the most productive areas of the ocean, then the same amount of seafood that is currently produced annually, could be produced in an area the size of Lake Michigan (Seifert, 2017). Not only are these recirculating systems taking up useful land space, they are using an immense amount of energy to keep the operate the systems making them very costly.

Recirculating aquaculture systems have the highest energy use requirement per kilogram of fish when compared to that of other methods in the U.S. Pacific Northwest at 567 MJ/kg (Kim & Zhang, 2018, p. 2) compared to 117 MJ/kg of a conventional flow system (Kim & Zhang, 2018, p. 2). The main contributors to the energy consumption are the circulation, aeration, and filtration of the system’s water  (Badiola et al., 2018, p. 10). The aeration of the tanks typically amounts for 20% of the total energy consumption for the farm’s production cycle (Badiola et al., 2018, p. 60) whereas in an offshore aquaculture operation, no additional aeration of the water is needed because operating in deeper waters has shown to not even change the dissolved oxygen levels in the Gulf of Maine (Holmer, 2013, p. 142) due to the high volume of water naturally passing through the system. In addition to aerating the water, the water also has to be passed through multiple filter systems which takes hydraulic pressure, requiring more energy from the circulation pumps to operate during a normal backwashing cycle (which is how the filter is cleaned) a filter will use five times as much energy (Badiola et al., 2018, p. 60).

The waste that is gathered from these filters has to be either repurposed or disposed to prevent the introduction of these wastes into the water,  this again is very costly and energy intensive. Recirculating aquaculture systems reduce nutrient loading in the sediment by filtering out effluent waste, though the process is energy intensive and produces concentrated effluent waste which then must be dealt with. Because of this reason investors have only seen a 5% return on investment in recirculating aquaculture systems (Cermaq, 2012) as compared to 52% return on investment in net pen aquaculture (Cermaq, 2012). All of these factors make offshore aquaculture (a net pen system) a more cost effective and energy efficient manner of reducing the effects of nutrient loading from aquaculture.

Seafood consumption is steadily increasing not just in the United States, but globally. By 2030, ~66% of seafood will come from aquaculture production (Gewin, 2017). The United States only acquires a small fraction of its seafood from domestic production, and 50% of the seafood that is imported comes from some form of aquaculture (Knapp & Rubino, 2016, p. 214). It is clear that the reason Americans have not began establishing domestic aquaculture is not because they do not want to eat farmed fish, but because there are regulations in place that make it far too difficult to do it in the first place. The United States is ranked number 1 in potential for offshore aquaculture development (Kapetsky, Aguilar-Manjarrez, & Jeness, 2013, p. 26) and should immediately look to streamlining the permitting process for offshore aquaculture get at this opportunity.



Alternative Energy Programmatic EIS. (2007, October). Retrieved from

Arnold, C. (2006, March 22). Feeding the World with Deep-Sea Fish Farms. Retrieved from

Bannister RJ, et al. (2014). Changes in benthic sediment conditions under an atlantic salmon farm at a deep, well-flushed coastal site. Aquac Environ Interact. 5(1):29-47.

BOEM, BSEE, NMFS, USACE, US Coast Guard, EPA, & FWS. (2017, February 06). Memorandum for Understanding for Permitting Offshore Aquaculture Activities in Federal Waters of the Gulf of Mexico. Retrieved from

Bowman, William D., et al. Ecology. Sinauer Associates, Inc. Publishers, 2018.

Carroll ML, Velvin R, White P, Cochrane S, Fieler R. Organic enrichment of sediments from salmon farming in norway: Environmental factors, management practices, and monitoring techniques. Aquaculture. 2003;226(1-4):165-180.

Cermaq., Closed Containment  (2012, January 11). Retrieved from containment_2012.11.01.pdf?MOD=AJPERES

Deacutis, C. (n.d.). Impacts. Retrieved from

Energy use in Recirculating Aquaculture Systems (RAS): A review. (2018, March 20). Retrieved from

Eutrophication and Hypoxia Impacts. (n.d.). Retrieved April 24, 2019, from

FAO. (2013). A global assessment of offshore mariculture potential from a spatial perspective. Retrieved from

Foley, D. (n.d.). Infographic: Fish Farming [Pamphlet]. Oceana.Foley, D. (n.d.). Infographic:

Fish Farming [Pamphlet]. Oceana.

Gentry, R.R., et al. (2016, December 24). Offshore aquaculture: Spatial planning principles for

sustainable development. Wiley Online Library.

Gewin, V.  (2017, April 20). Is the United States ready for offshore aquaculture? Retrieved from

Gewin, V. (2017, May 04). The tide is changing for offshore aquaculture. Retrieved from

Holmer, M., Wildish, D., & Hargrave, B. (2005, July 05). Organic Enrichment from Marine Finfish Aquaculture and Effects on Sediment Biogeochemical Processes. Retrieved April 24, 2019, from

Holland, J. (2010, June 23). Aquaculture’s battle for space. Retrieved from

InnovaSea. (n.d.). Retrieved April 18, 2019, from

Kim, Y., & Zhang, Q. (2018, June 18). Modeling of energy intensity in aquaculture: Future energy use of global aquaculture. Retrieved from

Knapp, G., & Rubino, M. C. (2016). The Political Economics of Marine Aquaculture in the United States. Reviews in Fisheries Science & Aquaculture, 24(3), 213-229. doi:10.1080/23308249.2015.1121202

Knockaert, C. (n.d.). Possible consequences of eutrophication. Retrieved from

Lapointe, G. (2013, March). NROC White Paper: Overview of the Aquaculture Sector in New England. Retrieved from

Lester, S. E., Gentry, R. R., Kappel, C. V., White, C., & Gaines, S. D. (2018, July 10). Opinion: Offshore aquaculture in the United States: Untapped potential in need of smart policy. Retrieved from

NIFA (2019) Find. Apply. Succeed. (n.d.). Retrieved from

NOAA. (n.d.). Offshore Aquaculture and the Future of Sustainable Seafood. Retrieved from

NOAA Sea Grant (2019). Find. Apply. Succeed. (n.d.). Retrieved from

NOAA. (2017, August). A Guide to the Application Process for Offshore Aquaculture in U.S. Federal Waters of the Gulf of Mexico. Retrieved from

NOAA. (2018). What is Eutrophication? National Oceanic and Atmospheric Association. U.S.

Department of Commerce.

Offshore Aquaculture: What’s All The Fuss About? (n.d.). Retrieved from

Rangeland Soil Quality—Water Erosion. 2001. USDA.

Rigs to Reefs. (n.d.). Retrieved April 24, 2019, from

Smee, B. (2018, May 11). Linc Energy fined $4.5m for pollution amounting to ‘ecological vandalism’. Retrieved from

Soil Erosion Case Study: Meadowview Open Space. (2016, November 30). Retrieved from

Tang, F. (2018, May 05). Chinese fish farm launches ‘world’s biggest’ deep-sea salmon cage. Retrieved April 18, 2019, from

United States., Congress., Senate. (2011). Offshore aquaculture: Challenges of fish farming in federal waters: Hearing before the Subcommittee on National Ocean Policy Study of the Committee on Commerce, Science, and Transportation, United States Senate, One Hundred Ninth Congress, second session, June 8, 2006. Washington: U.S. G.P.O. Retrieved April 18, 2019.

University of California – Santa Barbara. (2017, August 14). Tiny fraction of oceans could meet world’s fish demand: World’s oceans possess vast, untapped potential for sustainable aquaculture, say marine scientists. ScienceDaily. Retrieved April 24, 2019 from

U.S.Cong., House- Natural resources; Ways and Means; Foreign Affairs. (n.d.). H.R.2010 – National Offshore Aquaculture Act of 2007 (C., Author) [Cong. Bill from 110th Cong.].

Victory! Court Shuts Down Offshore Aquaculture in Gulf of Mexico. (2018, September 25). Retrieved April 18, 2019, from

Whitehead, P. (2018, March 27). Total Organic Carbon (TOC) and its Measurements. EGLA Labwater. Retrieved from

Whittle, P. (2018, February 20). Aquaculture project could lift status of US salmon farming. Retrieved from

Victory! Court Shuts Down Offshore Aquaculture in Gulf of Mexico. (2018, September 25). Retrieved from

Xu, H. et al. (2015). Determining Critical Nutrient Thresholds Needed to Control Harmful

Cyanobacterial Blooms in Eutrophic Lake Taihu, China. Environmental Science &

Technology. 49 (2), 1051-1059. DOI: 10.1021/es503744q

Zhang, S. et al. (2006). Impact of aquaculture on eutrophication in Changshou Reservoir.

Chinese Journal of Geochemistry.


Solutions to Unsustainable Salmon Farming Practices

Onshore aquaculture is a sustainable alternative to open-net salmon farming, where salmon are contained in nets placed directly into the ocean.

Hannah Brumby: Geology

Justin Parker: Building & Construction Technology

William LaVoice: Natural Resources Conservation

Gabbie Furtado: Animal Science

In the last twenty years salmon consumption has skyrocketed, increasing by nearly 250% (FAO). Today the bulk of production comes from salmon farms (OurWorldInData). The EU, the US, and China make up over seventy percent of the global market for Atlantic salmon and consumption is increasing in each place (Williams 2017). Unfortunately salmon farming has proven to be both economically and environmentally unsustainable. Yet production has not stopped due to the high demand. In order to meet people’s demand for salmon, a transition to more sustainable farming practices needs to take place.

Continue Reading

A Proposal to Expand North Atlantic Right Whale Protection Zones

Jake Yankee- Natural Resources Conservation

Olivia Babine- Environmental Science

Ben D’Ambra- Horticultural Science

Kayshauna Montano- Animal Science


The North Atlantic right whale, Eubalaena glacialis, faces a number of challenges to its recovery. Their habitat includes the waters off the U.S. East coast where they come into contact with pollutants, fishing gear, and boats that threaten their survival. The greatest source of right whale mortality is collisions with vessels. In order to mitigate this problem, researchers have utilized a number of strategies to help vessels and whales occupy the same space without colliding with one another. One of the most popular strategies is vessel speed restriction zones. These  are geographic areas in the ocean designated by the National Oceanic and Atmospheric Administration where vessels must slow down to accommodate right whales (Mullen 2013). While these zones cover much of the right whale’s current range, their distribution is patchy with long stretches of unprotected space between them and they do not extend far enough offshore to cover the whale’s entire habitat. To increase the effectiveness of these zones and better protect right whales from ship strikes, we propose that protection areas be expanded to cover the entire U.S. East coast and to extend 30 nautical miles offshore.

Continue Reading

Hydroelectric Power in The Snake River


Samantha Bruha: Animal Science

Shane Murphy: Horticulture

Jake Schick: Building Construction Technology

Ashley Artwork: Building Construction Technology

The Nez Perce people reside on the Snake River in North Central Idaho and still practice a hunter-gatherer way of life (Smith, 2018).  In 1855, The United States Government and five Native American tribes residing in Washington, Oregon, and Idaho signed the Treaty of Walla Walla (Smith, 2018)  Since the the original treaty, the Nez Perce Tribe has retained the right to fish, to hunt, and to graze livestock on unclaimed lands outside of the reservation (Smith, 2018).  Due to the addition of hydroelectric dams, beginning in the 1950’s on the Columbia and Snake Rivers, the Nez Perce Tribe has suffered a great loss of fishing resources from the effects of dams on the Salmon populations (Quirke, 2017).  Elliott Moffett, a 65 year old member of the Nez Perce Tribe, fights for Salmon in the lower Snake River (Quirke, 2017). “‘I like to say we are like the Salmon, we need clean, cold, swift running water. And they don’t have that because the dams have impounded their river,’” Moffett states (Quirke, 2017).  Moffett and his fellow activists at the Nimiipuu Protecting the Environment organization, have dedicated their lives to defending the environment and the Nez Perce rights (Support|Nimiipuu Protecting the Environment, 2018).  Every decision the tribe makes has “seven generations ahead” in mind and the scarcity of resources is making it harder and harder to teach future generations how to live off of the land (Support|Nimiipuu Protecting the Environment, 2018).

  Continue Reading

Extending SMA’s by 10 NM to Reduce Vessel Strikes with North Atlantic Right Whales

Abigail Szczepanek, major Natural  Resource Conservation

Hannah Davin, major Environmental Science

Beau Salamon-Davis, major BCT

Most animals names are derived from greek or latin terms, describing their looks or features. The North Atlantic right whale (NARW) is a special case. The right whale coined its name some time in the 17th or 18th century when whaling was becoming popular. Crane (2002) and National Geographic (2018) say they were considered the “right” whale to hunt because they are surface feeders, slow swimmers, yield high amounts of oil, meat and bone, and they float when they are dead. This made them easy targets and were hunted for nearly three centuries. Whalers would either shoot or throw a whale iron, otherwise known as a harpoon, into a whales blubber to create a connection between their boat and the whale. They would pull themselves in closer to the whale and plunge a barbed weapon into the whales lung or heart, ultimately killing it (New Bedford Whaling Museum, 2018). By 1937 there were less than 100 NARW left and commercial whaling was banned internationally (Marine Mammal Science, 2018). The whale was placed under the Endangered Species Act in 1970 (NOAA, 2018). Currently there are only 450 NARW’s left in the Atlantic Ocean and complete extinction is nearing within the next century (Gibbins, 2018). Continue Reading

It’s Sink or Swim for Lobsters in Southern New England: Climate Change is Turning Southern New England into a Boiling Pot and Lobsters are Leaving

There are two stories in New England currently: one of success and one of failure. The lobster fishing industry is without question one of the most significant parts of the New England identity and culture. Lobster fishing has provided a lucrative livelihood since the 1800s and continues to do so for those fishing in Northern New England. While those fishing for lobster in the North are hauling record numbers, the industry in the South has been heading toward the verge of collapse since the late 1990s. Tom Tomkiewicz, a Massachusetts lobsterman who fishes in Long Island Sound describes it himself, saying “there is nothing here… it’s crazy” (Abel, 2017). How can one of the biggest industries of a region suddenly be at massively different levels of success? The answer lies in the rising temperatures of the Atlantic Ocean and historic management practices that have lead to this disparity. Continue Reading

Preserving New England Lobster Fisheries in the Face of Climate Change

By Thomas Isabel, Hannah Brady, and Shawn Monast

Since the 1970’s, the waters off the coast of Southern New England have been warming at a startling rate due to a toxic combination of man-made factors including greenhouse gases and pollution. These changes to the Earth’s atmosphere are happening at a rapid pace, making climate change one of the biggest issues facing humanity. The aqua life inhabiting oceans, especially coastal waters, are being forced farther North into ocean environments with cooler temperatures fitting their ideal thermal range. One of the many species being affected by increasing water temperature is the American lobster, scientifically known as the Homarus Americanus. These ocean creatures have been around for almost 500 million years, long before any humans were recorded on Earth, and they are now being pushed out of their homes as a consequence of human actions. Although lobsters constantly face different challenges to their populations such as predation and disease, climate change has become their biggest threat in the last decade. Fishermen all along the Eastern coastline rely on the catch and sale of lobsters to make a living to support their families and keep the market afloat. Without this species, fishermen and seafood establishments would miss out on a potentially crucial portion of revenue and be forced to rely on the catch and sale of other ocean species or perhaps a different profession in the fishing industry. The American lobster makes up a large percentage of income for fisherman and their migration due to global warming is crippling the economy of coastal regions. In order to save lobster fisheries in southern New England from climate change, the Atlantic States Marine Fisheries Commission needs to educate fishermen on the constant changes in thermal temperatures range, new production possibilities, and the migration patterns through technological advancements.  

Continue Reading

Impacts of Climate Change on Southern New England Lobster Fisheries

Victoria Bouffard, Pre-Veterinary Science

Matt Sullivan, Horticulture

James Sullivan, Fisheries

Southern New England fisherman are still catching lobsters, but not in the way they want to be. They are not being caught in traps or nets, but in the stomachs of their predators. Bart Mansi, a lobster fisherman from Long Island Sound, hears from the local bass fisherman about the baby lobsters they find eaten by their catch. Some of the sea bass they pull in have over 10 baby lobsters in their stomachs. This not an uncommon occurrence,  multiple factors are involved with the scarcity of lobsters in southern New England, and increased predation is just the icing on the cake (Skahill & Mack, 2017). The southern New england lobster population has declined dramatically in the past few decades, while catches in Maine have soared. Harvests in Northern regions like the Gulf of Maine and Georges Bank have seen an increase from 14,600 mt (metric tons) in 1990 to 33,000+ mt in 2009, and from 1,300 mt in 1982 to 2,400 mt in 2007, respectively. While the southern New England region landings in Connecticut, Rhode Island, Massachusetts, and the New York border of Long Island Sound, declined from a peak of 10,000 mt from 1997 to 1999, to a low of less than 3,000 mt from 2003 to 2007 (Howell 2012). This dramatic shift in lobster settlement is due to a combination of factors, the most pressing being climate change. The Atlantic Ocean has increased by 0.23℃ every decade from 1982 to 2006, with temperatures varying by region (Pinsky & Fogarty, 2012). As the ocean temperatures rise, the more southern regions of New England are crossing a temperature threshold in which the water is no longer hospitable to lobsters, causing them to migrate North.

Continue Reading

Fish farms won’t let native populations off the hook


Atlantic Salmon in Kuterra’s on-land fish farm

In late August 2017, a fish farm owned by Cooke Aquaculture allowed more than 300,000 non-native Atlantic salmon escape into the Puget Sound of the Pacific Ocean off the coast of Washington state. Several days passed before a salvage team was hired. The main goal of the salvage team is to create a rapid-response center and encourage recreational fishers to catch as many salmon as possible. Earlier that year, Cooke submitted an application for “replacement and reorientation” of the facility to replace or repair the old-fashion steel cages the previous company had used prior to Cooke buying them out in 2016. The application stated that the system was “nearing the end of serviceable life,” and that repairs were needed in September, after the August salmon harvest (Kim E.T., 2017, para.5). A month before the collapse, Cooke had to complete an emergency repair to stabilize the crumbling facility. The emergency repair was to add extra anchors to the site because old ones had come loose and the site drifted away. Despite these concerns, state and federal agencies were not overly worried and figured the farm would remain stable until September and therefore did not ask them to replace the farm ahead of schedule (Kim E.T., 2017). After the escape incident in August, only about 146,000 of the 300,0000 escaped fish were recaptured (Kim E.T., 2017, para.1). Therefore, more than half of the escaped Atlantic salmon were released into the Pacific Ocean. Typically, Atlantic salmon are known to be more aggressive than Pacific salmon and some of the escaped salmon swam upstream towards spawning areas (Alaska Department of Fish and Game [ADFG], 2017; Kim E.T., 2017). Farmed Atlantic salmon can be identified through a mark left on their ear bone by Cooke aquaculture, and have been identified as far north as Fraser River in British Columbia (Mapes, 2017). Even after losing over 300,000 Atlantic salmon in August, Cooke aquaculture at Puget Sound was granted a permit in October to have one million more Atlantic salmon added to their farm. The only requirement for this permit was that the fish moving from the hatchery to the outside pens carry no disease. Their operation was granted the permit even though their prior escape is still under investigation (Mapes, 2017). Cooke’s main argument for the permit was that they had hatched salmon in their hatcheries and it was biologically time for them to move into the water. This is understandable due to rising demand of fish for consumption over the past few years.


In fact, the seafood industry has grown so much that industrial fishing can no longer support the demands of consumers resulting in the overfishing of oceans (Food and Agriculture Organization [FAO], 2011;World Wildlife Fund [WWF], 2017). Overfishing occurs when so many fish are being captured from the ocean that the species cannot reproductively keep up (WWF, 2017). In 2012, about 21% of fish stocks were considered overfished (National Oceanic and Atmospheric Administration [NOAA] Fisheries, 2013, Table 1).

Just like farms on land that produce cows, chickens and pigs for consumption, fish farms are continuing to pop up in our local waters and are solving the problem of overfishing native populations. Aquaculture, the operation of raising fish commercially, supplies more than 50% of seafood produced for consumption, a number that will continue to rise (NOAA Fisheries, 2017-a, para.7). A report from NOAA fisheries illustrated that in 2015, the fish industry generated $208 billion dollars in sales and supported 1.6 million jobs across the United States (NOAA Fisheries, 2017-b, para. 6). In 2016, fish farms aided in bringing the previous 21% of overfished stocks down to 16% (NOAA Fisheries 2016, Table 2). By farming species that were once overfished, aquaculture facilities allow endangered populations to regenerate themselves (NOAA Fisheries, 2016). While the farmed fish industry continues to grow and reduces overfishing, it consequently poses significant risk to surrounding ecosystems when farmed fish escape and introduce parasites, compete for resources, and interbreed with native species. Between 1996 and 2012 close to 26 million fish were released from aquaculture facilities worldwide, that’s an average of about 1.5 million per year, and that’s just reported escapes (Center for Food Safety [CFS], 2012, Table 1). Fish escapes are common all around the world. For example, in Scotland, The Scottish Salmon Company reported that 300,000 Atlantic salmon escaped on May 21, 2017 (Scotland’s Aquaculture, 2017, pg. 2). The escape was said to be caused by the weather. Similarly, another Scottish company, Scottish Sea Farms ltd., reported that a predator caused 17,398 Atlantic salmon to escape from their farm on March 25, 2017 (Scotland’s Aquaculture, 2017, pg. 1). Furthermore, in 2010, 138,000 salmon escaped from pens in Grand Manan Canada from Admiral Fish Farm ltd. (Canadian Press, 2011, para. 2). President of the company, Glen Brown said that the breach was due to storms that prevented repair for more than four days (Canadian Press, 2011, para. 4). This escape could have been prevented if the regulations in place were upheld and state and national officials mandated the pens were fixed prior to the escape. The regulations in place currently are insufficient, and should be revised to prevent bigger and more detrimental escapes from occurring in the future. So, how can we continue to produce farmed fish while limiting the harmful effects of escape on the ecosystem? By improving legislative requirements on fish farms and increasing the number of on-land aquaculture facilities, the ecosystem will be better protected from escaped fish and the parasites, competition, and gene transmission they produce.

When the spawn of wild salmon hatch, they leave the spawning area and do not return until maturity is reached at around two years of age (Martyal, 2010). In the Broughton Archipelago of Western Canada, from 2001 to 2002, the population of expected spawn to return to the spawning area declined by 97% (Martyal, 2010, para. 2). When the population was examined, 90% of the juvenile wild salmon had contracted sea lice (Martyal, 2010, para. 2). 

Sea lice are parasites that feed on bodies of fish leaving open wounds that are susceptible to disease (Farmed and Dangerous, n.d.). Farmed fish are prone to getting sea lice due to being held in crowded cages, which is an ideal breeding area for lice. Juvenile salmon are most susceptible to getting sea lice since their scales have not fully developed, therefore it is easier for the lice to attach and eat away at their flesh (Farmed and Dangerous, n.d). In 2004, all the fish farms in the Broughton Archipelago area were found to have 29.5 million sea lice (Martyal, 2010, para. 6). When wild juveniles come in contact with infected farmed salmon on their two year journey before returning the the spawning area. This is because most fish farms are found in sheltered water areas along wild salmon migration routes (Farmed and Dangerous, n.d.). The juveniles must make it through 50 miles of fish farms before reaching open water (SeaWeb, 2007). Fishery ecologist from the University of Alberta, Martin Krkosek estimates that sea lice kills more than 80% of the salmon expected to return to their spawning sites (SeaWeb, 2007, para. 1). Additionally, Director of the Salmon Coast Field Station, Alexandra Morton addresses that the juvenile salmon from Broughton must be introduced to sea lice through farmed fish because the parents of the juveniles that carry the parasite are too far offshore (SeaWeb, 2007). Morton also confirms the idea that juveniles are too weak to survive sea lice infections (SeaWeb, 2007). Therefore, it is more than likely that the juvenile salmon are contracting sea lice from nearby escaped farmed fish.

One of the more prevalent issues that arises once large amounts of fish escape from aquaculture pens is competition between wild populations and farm-bred populations. Using salmon as a model organism, we can look further into the issues that arise when aquaculture-bred fish begin to interact with ecosystems originally inhabited by natural, wild fish stock.

First and foremost, dietary competition poses a huge threat of starving out endemic populations of salmon once their farm-bred counterparts emigrate to their habitats. Since the domesticated salmon and wild salmon share the same diet, the arrival of additional organisms to an ecosystem gives rise to the threat of surpassing the carrying capacity of said ecosystem and putting both farmed and wild fish at risk of starvation due to resource depletion (Naylor et al., 2005).

This risk is compounded even further by the nature of farm-bred salmon. Since aquaculture farms select for larger, meat-rich fish, farm-bred salmon have selection pressures in their favor (Bajak et al., 2016). Displaying more aggressive behavior, coupled with their larger biomass, farmed salmon are able to exhibit more fitness in acquiring food than their wild cousins, threatening the natural balance of a fragile ecosystem and causing complete ecological collapse (Naylor et al., 2005; Glover et al., 2016). With roughly 40% of salmon caught off the coast of the Faroe Islands being of farmed origin, the true implications of this new-found competition are only beginning to unfold (Naylor et al., 2005, pg. 427).

Not only do farmed salmon pose a risk of starving out wild salmonids, but they also display invasive behaviors in regards to nesting and foraging grounds, displacing native fish stock to more predated waters, potentially with very little resources (Toledo-Guedes et al., 2014).  A study by Van Zwol and associates found data showing that the David’s score (a metric of ecological dominance determined by behavioral analysis) of native salmon dropped when invasive species were introduced to their habitat. This directly resulted in reduced food consumption in the native stock by 40% (Van Zwol et al., 2012, fig. 1). The rise of feral populations of farmed salmonids and the subsequent competition between them and wild stock is a growing concern among ocean ecologists, and is directly tied to decreases in wild salmon population by as much as 50% in recent years (Naylor et al., 2005; Castle, 2017, para. 5).

Similarly, farmed fish can introduce new genes to a native population. When escaped fish mate with their native cousins, populations overtime start to show genetic similarities. Nearly half of the wild salmon population in Norway share about 40% of the gene pool of nearby farmed salmon , showing that the blurring of lines between these two distinct populations is already beginning to unfold (Bajak et al., 2016, para. 3). This may seem harmless, but these traits that are being passed from farmed to wild salmon are not desirable in an open ocean setting. Typically, farmed salmon have a lower fitness and survival rate than wild salmon because they are so used to having their survival needs provided for them by farmers. In this area of weak natural selection, and breeding efforts focused solely on production purposes, domesticated salmon with genetically inherited aggressive behavior put them at increased risk of predation. The same traits that allow farm bred salmon to dietarily out compete wild stock puts them in more danger of being killed by predators (Roberge et al., 2008). When traits are passed on to the hybrid population, they are not as successful as their wild parent and have a greater potential of death. According to the Norwegian Institute of Nature Research and the United Nations Food and Agriculture Organization, by interbreeding native and farmed fish species over two generations there is a significant decline in success, fitness and overall population size (Bajak et al., 2016). A study conducted by Roberge and colleagues, confirms these findings . Roberge compared the level of gene transcription within the genomes of wild and second generation hybrids of wild and farmed salmon. It was found that over 6% of genes had significantly different transcription levels than the first generation cross between the native and farmed population (Roberge et al., 2008, pg. 314). If detrimental genes are propelled into expression by this shock to the genetic system of wild salmon, or if normally functioning genes are overexpressed, the overall fitness of the wild population could exponentially decline. Dr. Christian Roberge, an expert researcher in the field of the effects of salmon hybridization at Laval University claims that this is a serious cause for concern in coming years, as it can lead to population collapse when combined with the other issues highlighted in this paper (Roberge et al., 2008).

Further compounding the damaging effects of interbreeding, the triploidy of hybrid salmon has the potential to majorly contribute to population collapse. Much like mules, horse-donkey hybrids, hybrid salmon possess three sets of chromosomes in comparison to a regular organism’s two, rendering them incapable of reproduction (Fjelldall et al., 2014). Therefore, if a large amount of triploid hybrid salmon are present in a population, mass die offs and subsequent population decreases are inevitable, as the population has no means of sustaining itself if it cannot reproduce at a rate faster than it dies off.

By gene transmission between wild and farmed populations, and the proliferation of triploidy, the overall survival rate for fish in wild ocean environments are declining and causing a deleterious effect on the ecosystem. A successful ecosystem needs high survival rates for it organisms by ensuring specific health needs are met. As Dr. Roberge highlighted in his analysis of the genetic transcription differences between native and farmed salmon, these issues will only compound with time, and can quickly get out of control if we do not do anything to rectify them.

Aquaculture is a complicated system that falls under the jurisdiction of the Environmental Protection Agency along with several other state and federal agencies in the United States (Centers for Epidemiology & Animal Health, 1995). The EPA sets effluent limitation guidelines (ELGs), which restrict the allowable amount of pollution that large Concentrated Animal Production Facilities (CAAP) can produce (Harvard Law School et al., 2012). By the Clean Water Act (CWA) definition, any CAAP that has a “discernible, confined and discrete conveyance… from which pollutants are or may be discharged” is termed a point source polluter (Harvard Law School et al., 2012). The CWA is regulated under the EPA (Harvard Law School et al., 2012).Through the EPA aquaculture facilities are regulated as point source polluters if they produce more than 20,000 (cold water facilities) or 100,000 (warm water facilities) pounds of fish per year and use 5,000 pounds or more of feed per month for at least 30 days per year (Harvard Law School et al., 2012). However, ELGs do not apply to CAAPs that do not fall below these requirements and are instead governed by the National Pollutant Discharge Elimination System (NPDES) (Harvard Law School et al., 2012). Under the NPDES these facilities are required to obtain a permit with specific effluent limitations based off the judgement of the individual writing the permit (Harvard Law School et al., 2012). Therefore, there are no strict guidelines, just the permit writer’s assessment. ELGs can have both numeric and narrative limitations but do not require one or the other (Harvard Law School et al., 2012). While for larger CAAPs, ELGs help regulate the limitation of food input necessary for production, the proper storage of drugs and pesticides, and routine inspections, they do not explicitly address fish escape as a problem (Harvard Law School et al., 2012).

While there are massive ecological consequences to fish escape, the most direct and immediate effect felt by people is the economic damage caused by lost fish. Across six European nations (United Kingdom, Norway, Malta, Ireland, Spain and Greece) over a three year period, 8,922,863 fish escaped in 242 incidents, with over five million of those occurring during two catastrophic events. This accounts for a €47.5 million loss per year, or $56,391,050 (Jackson et al., 2015 , pg. 22). This cost alone is incentive for increased regulations, as solving the fish escape problem would mean cheaper fish for consumers and more profits for the farmers.

Many detractors of legislation would claim that it’s impossible to impose legislation into the mix of a low-profitability production environment such as fisheries. Increasing profitability and employment in the industry all while increasing protection to the environment can seem unattainable, but these are exactly the regulatory goals Norway has adopted in regards to its massive fisheries industry. Despite being the 118th largest country by population, Norway is the world’s 10th largest producer of fish (Årland, & Bjørndal, 2002, pg. 309). By instituting annual quotas for total allowable catches for various species, as well as freezing and sometimes even cutting allowable production in at-risk areas for pathogen transmission, Norway has effectively been able to manage stock populations and detriment to the environment effectively (Castle, 2017). Between 2006 and 2010, fish escapes in Norway decreased precipitously from 290,000 to just 70,000, an over 400% decrease (CFS, 2012, Table 1). This is concrete evidence of the feasibility and efficacy of regulations in the aquaculture industry, and legislators would be wise to follow Norway’s highly successful path.

Cooke aquaculture at Puget Sound is currently under investigation because the Wild Fish Conservancy (WFC) has filed a citizen suit against them under the CWA (Schuitemaker, 2017). The CWA monitors the water quality impacts of aquaculture and any pollutants that are released into the water without a permit (Harvard Law School et al., 2012). The WFC maintains that Cooke should be held accountable because living organisms, like fish that are released into the water, are considered pollutants (Harvard Law School et al., 2012). If the set ELGs for large fish farms do not directly include protection against fish escape and continue to group escaped fish as a pollutant, why would individual perimeters for smaller farms consider it?

Regulations by the EPA should be expanded to include all size farms, and should acknowledge escaped fish separately from other pollutants. Additionally, new and existing regulations should be enforced and recorded more consistently to ensure that new aquaculture facilities are not constantly reinventing the wheel, and can obtain knowledge on running an environmentally and economically conscious facilities (Harvard Law School et al., 2012). If facilities are forced to limit the concentration of fish within a pen, less fish will escape into the open water, should an escape occur. If strict enough regulations, punishments and fines are implemented, few farms could skirt the responsibilities involved with running an ecologically sustainable aquaculture facility and maintain economic feasibility (Thorvaldsen et al., 2015).

Facilities should regularly be inspected by their operating company and the EPA to ensure fish pens are secure and can endure regular weather, tide, and ocean variabilities in the area (Fisheries and Oceans Canada, 2017). Increased inspections would limit the amount of equipment becoming dilapidated to prevent future escapes, like the one that occurred at Cooke aquaculture.

Even if no reprimanding action is taken or required of facilities, all incidents of escape should be recorded and investigated to prevent future incidents from occurring and to be used as guidelines for other facilities so they can avoid making the same errors (Fisheries and Oceans Canada, 2017; Harvard Law School et al., 2012; Scotland, 2017). A list of all escape incidences should be created and updated yearly to ensure an accurate number of escapees is gathered (Scotland, 2017; Fisheries and Oceans Canada, 2017).

While instituting new legislation is a viable solution to preventing environmental issues in regards to fish farms, the costs associated with implementing and enforcing regular inspections, water quality tests, and regulating farm sizes and outputs are considerable and discourage new players from entering the aquaculture industry (McCarthy and River, 2002). Stringent enforcement of these regulations is also absolutely necessary, as many companies simply skirt regulations when they lack oversight due to operational complications, lack of operator education, tight schedules and efficiency initiatives (Thorvaldsen et al., 2015).

In addition to increasing regulation, creating more on-land fish farm facilities will eliminate escape occurrences, and significantly decrease the environmental impacts fish farms have on open water ecosystems (O’Neill, 2017). When possible, moving fish farms to facilities on land could be the solution to preventing fish escape and the myriad of environmental issues mentioned previously that facilities produce in open water environments (Aukner, 2017). This solution readily applies to the majority of fish species, as moving to on-land facilities is a viable and more sustainable option, but for the majority of shellfish, like clams, oysters, and scallops farming in open water can be more beneficial to the environment than destructive by because these species can remove biotoxins, chemical contaminants, and pathogenic microorganisms during their natural process of filtering water for food and other resources (Connecticut Department of Agriculture, 2017). Kuterra, a land based aquaculture facility has had great success in starting an on-land fish farm, and releases documents containing information on the costs associated with on-land fish farming, guides to operating on-land facilities, and the benefits of farming on-land which are valuable to other companies interested in opening facilities (Kuterra, 2014). With the support of multiple national and international companies, their hope and mission is that more farms will open or move on shore in the future and by providing resources future companies can avoid costly trial and error processes (Kuterra, 2014). Several farmed species are marine fish, and therefore require access to saltwater, so on- land facilities are limited by location, needing to stay within several kilometers from a saltwater source in order to operate (Kuterra, 2014).

In order to create a sustainable and economically productive aquaculture industry going  forward, regulations must be changed to accommodate greater operational aspects of fish farms. This industry could and should be reshaped to prevent further degradation of the environment without sacrificing economic capacity. Additionally, innovations, such as on-land fish farms, must continue to be proposed and investigated for feasibility and efficacy. The future of mankind’s fisheries is at stake, and pivotal action must be taken to ensure the safety of our seafood supplies. We strongly advise following the advice of the wealth of experts cited in this paper, and implement strict regulations in the vein of Norway’s that regulate density of fish in net pens, total annual production limits and scalebacks, and fines for noncompliance.


Eleah Caseau, Environmental Science

Jenna Costa, Animal Science, Biotechnology Research

Trevor Klock, Plant and Soil Science



Alaska Department of Fish and Game (2017). Invasive Species — Atlantic Salmon (Salmo salar) Impacts. Retrieved from

Årland, K., & Bjørndal, T. (2002). Fisheries management in norway—an overview. Marine Policy, 26(4), 307-313. doi://

Bajak, A., Simms, E. L., McDowell, C., Graham, W., & Petit, C. (2016). Into the Wild: When Farmed Salmon Interbreed With Their Wild Cousins. Retrieved from

The Canadian Press. (2011). 138,000 Farmed Salmon Escape into Bay of Fundy. Retrieved from

Castle, Stephen. (2017). As Wild Salmon Decline, Norway Pressures Its Giant Fish Farms. New York Times. Retrieved from

Centers for Epidemiology & Animal Health (1995).Overview of aquaculture in the United States. United States Department of Agriculture: Animal and Plant Health Inspection Service. Retrieved from

Center for Food Safety. (2012). Reported escapes from fish farms. Retrieved from

Connecticut Department of Agriculture. (2017). Environmental benefits of shellfish aquaculture. Retrieved from

Farmed and Dangerous. (n.d.). Sea Lice. Retrieved December 04, 2017, from

Fisheries and Oceans Canada. (2017). Escape Prevention. Government of Canada. Retrieved from

Fjelldal, P. G., Wennevik, V., Fleming, I. A., Hansen, T., & Glover, K. A. (2014). Triploid (sterile) farmed atlantic salmon males attempt to spawn with wild females. Aquaculture Environ Interact, 5 doi:10.3354/aei00102

Food and Agriculture Organization of the United States. (2011). Fish Consumption reaches all-time high. Retrieved from

Glover. K.A., Bos, J.B., Urdal, K., Madhun, A.S., Sørvik, A.G. E., Unneland, L., … Wennevik, V. (2016). Genetic screening of farmed Atlantic salmon escapees demonstrates that triploid fish display reduced migration to freshwater. Biological Invasions 18. 1287-1294, doi: 10.1007/s10530-016-1066-9.x

Harvard Law School Emmett Environmental Law & Policy Clinic, Environmental Law Institute, & The Ocean Foundation. (2012). Offshore Aquaculture Regulation Under the

Clean Water Act. Retrieved from

Jackson, D., Drumm, A., McEvoy, S., Jensen, Ø, Mendiola, D., Gabiña, G., . . . Black, K. D. (2015). A pan-european valuation of the extent, causes and cost of escape events from sea cage fish farming. Aquaculture, 436, 21-26. doi://

Kim, E. T. (2017). Washington State’s Great Salmon Spill and the Environmental Perils of Fish Farming. Retrieved from

Kuterra Limited Partnership. (2014). Our Story. Retrieved from

Mapes, L. V. (2017). State approves 1 million more farmed fish for Puget Sound, despite escape. Retrieved from

Martya1, G. D., & Saksidab, A. S. (2010). Gary D. Marty. Retrieved December 04, 2017, from

McCarthy, T., & River, C. (2002). Is fish farming safe? Time Magazine. Retrieved from,9171,391523-3,00.html

Naylor, R., Hindar, K., & Fleming, I.A. (2005). Fugitive Salmon: Assessing the Risks of Escaped Fish from Net-Pen Aquaculture. Bioscience 55.5. 427-37,[0427:FSATRO]2.0.CO;2.

National Oceanic and Atmospheric Administration Fisheries. (2017-a). Basic Questions about Aquaculture: Office of Aquaculture. Retrieved from

National Oceanic and Atmospheric Administration Fisheries. (2017-b). NOAA Fisheries Releases Fisheries Economics of the U.S. and Status of Stocks Reports. Retrieved from

National Oceanic and Atmospheric Administration Fisheries. (2016). Status of stocks 2016. Retrieved from

National Oceanic and Atmospheric Administration Fisheries (2013). Status of Stocks 2012. Retrieved from

O’Neill, E. (2017). In the future, we might farm fish on land instead of in the sea. KCTS9. Retrieved from

Roberge, C., Normandeau, E., Einum, S., Guderley, H., & Bernatchez, L. (2008). Genetic consequences of interbreeding between farmed and wild atlantic salmon: insights from the transcriptome. Molecular Ecology 17(1). 314-24, DOI: 10.1111/j.1365-294X.2007.03438.x

SeaWeb. (2007). Fish Farms Drive Wild Salmon Populations Toward Extinction. Retrieved from

Schuitemaker, L. (2017). Lawsuits filed over Cooke Puget Sound salmon escape. Retrieved from

Scotland’s Aquaculture. (2017). Fish Escape. Retrieved from

Thorvaldsen, T., Holmen, I. M., & Moe, H. K. (2015). The escape of fish from norwegian fish farms: Causes, risks and the influence of organisational aspects. Marine Policy, 55. 33-38.

Toledo-Guedes, K., Sanches-Jerez, P. & Brito, A. (2014). Influence of a massive aquaculture escape event on artisanal fisheries. Fisheries Management of Ecology 21. 113-121, doi: 10.1111/fme.12059

Van Zwol, J., et al. (2012). The effect of competition among three salmonidson dominance and growth during the juvenilelife stage. Retrieved December 05, 2017, from


World Wildlife Fund (2017). “Overfishing.” WWF, World Wildlife Fund. Retrieved from

Dam… The Atlantic Salmon Are Gone


They start out looking like little, orange colored, tapioca balls, floating in large bundles at the bottom of a steadily moving river. These Atlantic salmon eggs, born in the Connecticut River, are at the very beginning stages of their life, having just been fertilized by a fully mature male Atlantic salmon. They will continue to grow and develop within the freshwater river into parr, or adolescent salmon, for two to four years, before they leave their home tributaries in the spring months and begin a journey that will take them downriver, through estuaries, and hundreds or thousands of miles to ocean feeding areas (Hendry & Cragg-Hine, 2003, p. 4 and McCormick, S. D., Hansen, L. P., Quinn, T. P., & Saunders, R. L., 1998, p. 77). When the developing salmon finally reach the ocean they are known as smolt, and they will then migrate to the coasts of New England, Canada, Greenland, and even Spain, France and the UK, where they will live for around a year before they return to their birthing grounds to spawn the next generation of Atlantic salmon (Hendry & Cragg-Hine, 2003, p.3). Along with long migrations, smolt now face finding new food sources, diseases, parasites, and predators in the vast ocean they have arrived at (McCormick et al., 1998, p. 77). The smolt that survive and thrive in their new environment for one winter now earn the title of grilse (Miramichi Salmon Association [MSA], 2015). Because development, winter survival, and sexual maturation require high levels of stored energy, feeding and growth are of prime importance during freshwater residence (McCormick et al., 1998, p. 78).

Unfortunately, this hasn’t happened within the Connecticut River system since the early 1800’s. With the construction of Turners Falls dam in Massachusetts in 1800, the last recorded spawning of Atlantic salmon was in 1809 and there has been no historical population return since (Benson, Hornbecker, & Mckiernan, 2011, p. 11). Compared to an average of 100-200 Atlantic salmon in the Connecticut River in 1967, there were only about 75 salmon that returned in 2009 (Benson, Hornbecker, & Mckiernan, 2011, p. 12).

Atlantic salmon are important for supporting the ecology of the Connecticut River system and surrounding habitats. Developing fry and parr salmon offer ecological benefits to the Connecticut River system by feeding on and controlling populations of aquatic invertebrate larvae within the river, such as mayfly, stonefly, and caddis (Hendry & Cragg-Hine, 2003, p. 7). In addition, Atlantic salmon that spawn in the Northeast American river systems are also crucial to sustaining the Atlantic Ocean salmon population at large. Not only do they offer food for other species surrounding the Connecticut River, they also function as enormous pumps that push vast amounts of marine nutrients from the ocean to the rivers inland (Rahr, G., 2017). These nutrients are incorporated into food webs in rivers and surrounding landscapes by a host of over 50 species of mammals, birds, and other fish that forage on salmon eggs, juveniles, and adult salmon (Rahr, G., 2017). In Alaska, spawning salmon contribute up to 25% of the nitrogen in the foliage of trees (Rahr, G., 2017). With this information, we can infer that Atlantic salmon populations have the ability to contribute increased percentages of nitrogen to foliage surrounding the Connecticut River system.

A sustainable salmon population also offers economic advantages to the communities surrounding the Connecticut River system. High numbers of salmon bring an increase in public participation in fishing clubs like the Fish Creek Atlantic Salmon Club (Carey, 2017). With increased participation in fishing clubs and throughout fishing season, professional and recreational fishers spend a substantial amount of money on fishing trips. Aside from joining fishing clubs, in 2014, marine anglers in the US spent $4.9 billion on fishing trips and $28 billion on fishing equipment (National Oceanic and Atmospheric Administration [NOAA], 2017). In 2006, there were about 2.8 million recreational anglers in the New England region who took 9.7 million fishing trips (NOAA, 2006, p. 51). These anglers, in total, spent $438 million on recreational fishing trips and $1.44 billion on fishing-related equipment (NOAA, 2006, p. 51).  Retired Senator Elizabeth Hubley claims that the value of wild Atlantic salmon was once $255 million and the value to the surrounding areas in the gross domestic product was about $150 million (Atlantic Salmon Federation [ASF], 2017: Hubley, 2017). Increased Atlantic salmon populations also supported 3,872 full-time equivalent job in 2010, and about 10,500 seasonal jobs depend on wild Atlantic salmon (ASF, 2017; Hubley, 2017). These jobs include salmon angling and related tourism, food services, and accommodation sectors in the area (ASF, 2011, p. 54).

New England communities were built along banks of rivers so dams have been a central component since the beginning to provide water for irrigation, power generation, industrial operations, and provide clean drinking water. Specifically, the Connecticut River remains among the most extensively dammed rivers in the nation with 756 dams in place following the floods of 1932 and 1955 (American Rivers, 2017; & Benson, Hornbecker, & Mckiernan, 2011, p. 2 & 3). Two of the first dams on the Connecticut River system that prevent Atlantic salmon from migrating into tributaries are the Leesville Dam on the Salmon River and the Rainbow Dam on the Farmington River (Benson, Hornbecker, & Mckiernan, 2011, p. 20 & 22). The Leesville Dam was built in 1900 and is used for recreational purposes today. The second dam on the Connecticut River, the Rainbow Dam, was the first dam on the Farmington River, which is the largest tributary of the Connecticut River. This river is supposed to provide access to 52 miles of historic spawning habitat (Benson, Hornbecker, & Mckiernan, 2011, p. 22).

Now, Atlantic salmon face the biggest obstacle, figuratively and literally, they have ever encountered before. The Leesville and Rainbow dams are preventing Atlantic salmon from entering their respective tributaries and spawning each season. Dams are preventing upstream salmon passage, reducing water quality, altering substrate within the river, and alter flow regime of the river.

Dams placed on the Connecticut are the primary reason for the lack of returning Atlantic salmon to the Connecticut River system. Dams fragment habitat and ultimately prevent upstream salmon migration, which not only limits their ability to access spawning habitats, but also limits their ability to seek out essential food resources, and return downstream to the ocean (American Rivers, 2017). As a result, major dams on the in the Connecticut River watershed have blocked fish passage and caused significant decreases in Atlantic salmon migration and spawning rates (Daley, 2012, p. 1). A fish count was taken in 2010 and only found 1 Atlantic salmon was recorded above the Leesville Dam (Benson, J., Hornbecker, B., & Mckiernan, B., 2011, p. 20). Another fish count was taken above the Rainbow Dam and only showed 4 Atlantic salmon above the dam site (Benson, J., Hornbecker, B., & Mckiernan, B., 2011, p. 22).

Not only do dams physically prevent salmon from migrating upstream to spawn each season, they also slow down water velocities in large reservoirs which can delay salmon migration downstream (U.S. Fish & Wildlife Service, 2017). Additionally, dams can block or impede salmon spawning by creating deep pools of water that, in some cases, have inundated important spawning habitat or blocking access to it (U.S. Fish & Wildlife Service, 2017).

The water quality of the Connecticut River is very important in order to sustain Atlantic salmon populations because they require very good water quality, including high dissolved oxygen and low nitrates, non-ionized ammonia, and total ammonia content (Hendry & Cragg-Hine, 2003, p. 11). Although Atlantic salmon have a higher tolerance to warm temperatures than other salmon species, warm temperatures can reduce egg survival, stunt growth of fry and smolts, and increase susceptibility to disease (Klamath Resource Information System [KRIS], 2011). The chemical, thermal, and physical changes which flowing water undergoes when it is stilled can seriously contaminate a reservoir and even the water downstream (McCully, 2001). Water released from deep in a reservoir behind a high dam is usually cooler in the summer and warmer in the winter, while water from outlets near the top of the reservoir will tend to be warmer than river water year round. Unnatural or inverted patterns of warming or cooling of the river affect the ideal concentration of dissolved oxygen and adversely influences the biological and chemical reactions driven by temperature flux (McCully, 2001).

One experiment was conducted on the Colorado River in Glen Canyon, where pre-dam temperatures were obtained in varied seasons. The pre-dam temperatures varied seasonally from highs of around 27 ºC (80 ºF) to lows near freezing (McCully, 2001).  The maximum temperature of the river water that developing salmon can take is around 27 ºC (80 ºF) (KRIS, 2011). However, the temperatures of the water flowing through the intake of Glen Canyon Dam, 70 meters (230 feet) below the full reservoir level, varied only a couple of degrees around the year (McCully, 2001). The Colorado River is now too cold for the successful reproduction of native fish as far as 400 kilometers (250 miles) below the dam (McCully, 2001). This experiment is transferable to the Leesville and Rainbow dams because they are similar in size to the Glen Canyon Dam, therefore we can infer that both the Leesville and Rainbow dams impede fish populations because of drastic water temperature fluctuations year round.

The dams also stagnate downriver water flow, which is disadvantageous to the salmon because they cannot use the current of the river to guide them to the ocean to continue their life cycle before returning to spawn (American Rivers, 2017). Furthermore, dams that divert water for power also remove water needed for healthy in-stream ecosystems as well as directly affecting dramatic changes in reservoir water level, which can lead drying systems downriver (American Rivers, 2017). Furthermore, flow regime dictates substrate composition, or what makes up the bottom of a river channel. Slower moving water results in a riverbed of fine material, while faster flowing water tends toward a rockier or even bouldered substrate (Claeson, S. M., & Coffin, B., 2016). Research finds Atlantic salmon seem to prefer this rougher substrate, a habitat type that leads to an increase of 80% of individuals in a given area of 70% or more rocky or bouldered, substrate cover in studies of post partial or total dam removal. Researchers hypothesize the rocky substrate mitigates flow speed at greater depths, thereby facilitating salmon passage and providing refuge for salmon eggs and young (Lii-Chang, C. et al., 2008). Thus, a dam’s effect on flow regime and subsequent substrate composition is very detrimental to existing and future generations of Atlantic salmon.

In summary, the implementation of dams on the Connecticut River is harmful to Atlantic salmon populations in more ways than one. Connecticut River dams prevent salmon from migrating properly during their spawning periods. It became such a substantial problem that the National Fish Hatchery System (NFHS) of the U.S. Fish and Wildlife Service stocked Atlantic salmon in the Connecticut River at one point in time. Unfortunately, after poor returns back into the Connecticut River and its tributaries, the NFHA discontinued stocking Atlantic salmon in 2012 (U.S. Fish & Wildlife Service, 2017). In addition to impeding salmon migration, dams that were constructed also reduce water quality and alter the flow regime of the river and its tributaries.

Given the evidence dams present a steep hurdle for migratory, anadromous fishes, the natural evolution of the question then becomes; can we somehow mitigate that hurdle without removing the dam itself? Enter an attempt to do just that with the implementation of fishways around a dam. A fishway is a manmade path that allows for fish to safely pass around a dam without affecting the purpose of the dam (hydroelectricity, flood prevention etc.) (Harrison, 2008). There are two main types of fishways used today: fish ladders and fish lifts. A fish ladder is a system in which fish manually swim up and around the impending dam through a series of ascending pools (Edmonds, 2008, p. 1). Among the most common, pool and weir fish ladders utilize the flow of water over the ascending pools to encourage fish to jump up and into the next highest pool (Edmonds, 2008, p. 2). Another basic design called vertical slot fish ladder utilizes a small vertical slot in which the water flows into a pool. The angles of the entrance and exit slots create a holding area in each pool that the fish can rest in before battling the current to get to the next pool (Federal Energy Regulatory Commission [FERC], 2005).  A fish lift, however, is a hydraulic lift that automatically carries fish up and over the dam. Fish congregate at the base of the dam where they find the entrance to the fish lift. They then swim through this entrance and congregate in a holding tank at the base of the dam. Once there are enough fish in the holding tank, the tank is lifted to the height of the dam where fish are safely released on the other side (Harrison, 2008; Church, 2016).

One significant flaw with fishways is that they are not consistently effective for all fish species, especially Atlantic salmon. A fish lift put in place at the Holyoke dam on the mainstream of the Connecticut River kept track of how many fish passed through the elevator and their species. In 2010, the dam successfully passed: 164,439 American Shad, 39,782 Sea Lamprey, and only 41 Atlantic salmon (Benson, Hornbecker, & Mckiernan, 2011, p. 29). The Rainbow dam, which blocks a main tributary to the Connecticut River, conducted a study measuring what types of fish utilized its fish ladder. They found that three months after its installation in 2010, the vertical slot fish ladder passed: 548 American Shad, 3,090 Sea Lamprey, and only 4 Atlantic salmon (Benson, Hornbecker, & Mckiernan, 2011, p. 22). This data begs the question, why are some fishways more effective to certain species than others? Well, the answer is a lot more complex than people think. Alex Haro, a fish passage engineer at the S.O. Conte Anadromous Fish Research Center noted in 2014 that most of the design decisions made about fish ladders overlooked critical information (Kessler, 2014). Since fish ladder technologies developed with little cooperative partnership between engineers and fish biologists (Calles & Greenberg, 2009), attempts at engineering fish passage was often in the form of a one-size-fits-all solution for the sake of cutting costs. Examples of fatal oversights include a failure to calculate for critical variables that create what is referred to as ideal hydraulic conditions, such as speed, directional chop, and the physical and chemical qualities of water affected by a given dam as it relates to a fish species’ size, resilience, and overall passage efficiency (Brown & Limburg et al., 2013). Furthermore, design emphasis favored upstream passage potential, with little regard for returning downstream passage (Calles & Greenberg, 2009). Though even when fishways were designed with a target species in mind, passage was ever more ambitious than successful. Swedish ecological engineers found salmon-specific fish ladders prevented as much as 30% of potential spawning salmon from passing at the first mainstem dam and ultimately leading to an overall decrease of 70% of potential spawning salmon to reach high-quality spawning tributaries (Rivinoja, 2005).

As a way to bring the salmon populations back to the Connecticut River system, we advise the Connecticut state government to remove the Leesville and Rainbow Reservoir dams from the Connecticut River watershed. This solution will allow the restoration of salmon populations in the Connecticut River communities and bring with it economic, recreational, and ecological benefits to the surrounding areas.

In fact, areas that prioritized dam removal for the sake of habitat restoration are quickly witnessing a substantial recovery in both target fisheries and surrounding ecosystems, to include their local salmon species. The 210-foot-high Glines Canyon dam of Washington State was removed in the year 2014, following the removal of the Elwha dam in 2011, collectively reopening 70 miles, or 90%, of high-quality spawning habitat for salmon (Mapes, 2016). These two dams prevented a whole host of river wildlife from upriver passage for over a century, but the local Lower Elwha Klallam Native American tribe persevered and collaborated with state and federal officials to restore the habitat for their culturally important Coho and Chinook salmon (Mapes, 2017). And while the project came with a $325 million price tag, the effort is producing immediate ecological payoffs. Just three days after the Elwha dam removal, Chinook salmon were documented upriver the removal site (Mapes, 2016). The same year, in the 11-mile stretch between the two dams of century-long impossible spawning potential, the Elwha produced 32,000 outgoing juvenile Coho salmon (Mapes, 2016). Now, Chinook and Steelhead salmon numbers are up 350% and 300% respectively, and previously landlocked Sockeye salmon are returning to sea (Mapes, 2016). But the salmon aren’t the only winners in this story, downstream ecosystems have benefited from nutrient connectivity. As well, resulting physical and chemical changes to the river environment post-dam removal are creating more complex, and thus biologically rich, habitat structure for native species such as otter, various crabs, and birds (Mapes, 2016). One study out of Ohio State University evaluating Washington state’s efforts to remove dams concludes that birds with access to rivers hosting salmon, and therefore marine-derived nutrients, increases survival rates up to 11%, encourages multiple broodings per season of up to 20x, and increases the overall likelihood to stay year-round of up to 13x (Crane, 2015).

Destroying two dams in the Connecticut River watershed could come with major negative effects to the local societies. Because the Rainbow dam provides electricity to Hartford, CT, demolition of the dam will come with negative power ratings for the city, but how much of an impact will dam removal make? According to an excel sheet put together by the Department of Energy and Environmental Protection (DEEP), the Rainbow Dam in Windsor, CT has a capacity of .004 megawatts (MW) (2017). The best performing dam in America, the Grand Coulee Dam on the Washington River, has a capacity of nearly 7,000 MW (National Park Service, 2013). To put this number into perspective, if Hartford replaced 100 of its light bulbs with new energy efficient ones, it would successfully negate the power lost from removing the dam (American Rivers, 2016). Converting to newer energy alternatives in Hartford is a cheaper alternative, and could very easily negate the electricity loss from removing the Rainbow Dam.

The main problem with removing the Leesville dam is the recreational value that it holds. However, those who enjoy the open water will actually find that there is more to do without the dams there. Yes, people who had boats on the water will no longer have the ability to enjoy open waters, but the local area should see an upturn in use of the river. Now that the lake behind the Leesville dam is a river, kayaking and rafting will increase as there is more river length to explore unobscured by a dam. Also, as stated before, with more fish in the river, there is likely to be an increase in recreational fishing as well (American Rivers, 2017)

It is also important to consider the costs associated with maintenance of the dams and cost of demolition. One would think that the owner of the dam stands to lose the most when dam removal is considered, but in reality, this is not the case. In fact, the dam owners often work together with local, state, and federal governments to help get rid of the dam. This is because ownership of a dam also comes with maintenance and safety costs, as well as payments related to fish and wildlife protection (American Rivers, 2016). Costs for dam removal range from thousands to millions of dollars depending on sediment buildup, size of the dam, and complexity of river environment. Grant money and taxpayer money covers most of these payments, with some money coming from private investors (Benson, Hornbecker, & Mckiernan, 2011, p. 34 & 41).

In sum, Atlantic salmon populations will likely never be self-sustaining while hundreds of dams exist in the Connecticut River watershed (American Rivers, 2017). Especially when dams block nearly every tributary that feeds into the Connecticut River. Starting at the bottom of the Connecticut River, with the Rainbow and Leesville dam, we can slowly return natural spawning to the bottom of the river. By removing just two dams we successfully open access to over 70 miles historic spawning habitat (Benson, Hornbecker, & Mckiernan, 2011, p. 29; American Rivers, 2017). Luckily we are in a time where dam removal is picking up support. Out of the 1,150 dams that have been removed in the U.S. since 1912, approximately 850 of them have been in the past 20 years (Kessler, 2014). This upward trend of dam removal will heavily influence natural spawning in the Connecticut, and slowly but surely, those little, orange colored, tapioca balls will return home.


Ava Swiniarski – Pre Veterinary Science

Jonah Hollis – Environmental Conservation Science

Ben Smith – Building and Construction Technology


American Rivers. (2017). Connecticut River: New England strong. American Rivers. Retrieved from


American Rivers. (2016). FAQ’s about removing dams. American Rivers. Retrieved from


Atlantic Salmon Federation [ASF]. (2017). Freshwater recreational fisheries. Atlantic Salmon Federation. Retrieved from


Atlantic Salmon Federation [ASF]. (2011) Economic value of wild Atlantic salmon. Atlantic Salmon Federation. 1-70. Retrieved from


Benson, J., Hornbecker, B., & Mckiernan, B. (2011). The impacts of dams on river ecosystems. 0-55. Retrieved from


Brown, J. J., Limburg, K. E., Waldman, J. R., Stephenson, K., Glenn, E. P., Juanes, F. and Jordaan, A. (2013), Fish and hydropower on the U.S. Atlantic coast: failed fisheries policies from half-way technologies. Conservation Letters, 6: 280–286. doi:10.1111/conl.12000


Calles, O. & Greenberg, L. (2009), Connectivity is a two-way street—the need for a holistic approach to fish passage problems in regulated rivers. River Res. Applic., 25: 1268–1286. doi:10.1002/rra.1228


Carey, E. (2017). Fish Creek Atlantic salmon club, inc. Retrieved from


Church, D. (2016). Tour highlights Rainbow dam and fish ladder. Retrieved from


Claeson, S. M., & Coffin, B. (2016). Physical and biological responses to an alternative removal strategy of a moderate-sized dam in Washington, USA. River research
and applications
, 32(6), 1143-1152. Doi: 10.1002/rra.2935


Crane, M. (2015). River ecosystems show ‘incredible’ initial recovery after dam removal. Phys.Org. Retrieved from


Daley, B. (2012). US bid to return salmon to Connecticut River ends. 1-4. Retrieved from


Department of Energy and Environmental Protection [DEEP]. (2017). Certified renewable energy facilities. Retrieved from


Edmonds, M. (2008). What are fish ladders? Retrieved from


Federal Energy Regulatory Commission [FERC] (2005). Styles of fishways. Retrieved from


Harrison, J. (2008). Fish passage at dams. Retrieved from


Hendry, K., & Cragg-Hine, D. (2003) Ecology of Atlantic salmon. Conserving Natura 2000 Rivers, (7), 3-32. Retrieved from


Hubley, E. (2017) Economic benefits of recreational Atlantic salmon fishing- inquiry. Liberal Senate Forum. Retrieved from


Kessler, R. (2014). Mimicking nature, new designs ease fish passage around dams. Retrieved from


Klamath Resource Information System [KRIS] (2011). Water temperature and Gulf of Maine Atlantic salmon. Retrieved from


Lii-Chang, C., Hsing-Juh, L., Shao-Pin, Y., Chyng-Shyan, T., Chao-Hsien, Y.,  & Cheng-hsiung, Y.. (2008). Relationship between the Formosan landlocked salmon Oncorhynchus masou formosanus population and the physical substrate of its habitat after partial dam removal from Kaoshan Stream, Taiwan. Zoological Studies., 47.


Mapes, L. V. (2017). At Elwha River, forests, fish, and flowers where there were dams and lakes. The Seattle Times. Retrieved from


Mapes, L. V. (2016). Elwha, roaring back to life. The Seattle Times. Retrieved from


McCormick, S. D., Hansen, L. P., Quinn, T. P., & Saunders, R. L. (1998). Movement, migration, and smolting of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sc, 55(1), 77-92. Retrieved from,%20migration%20and%20smolting.pdf


McCully, P. (Eds.) (2001). Silenced Rivers: The ecological and politics of large dams. London, England. Zed Books. Retrieved from


Miramichi Salmon Association [MSA]. (2015) Life cycle of Atlantic salmon. Miramichi Salmon Association. Retrieved from


National Oceanic and Atmospheric Administration [NOAA]. (2017) Angler expenditures and economic impact assessments. NOAA Office of Science and Technology. Retrieved from


National Oceanic and Atmospheric Administration [NOAA]. (2006) New England summary. New England Region. 49-53. Retrieved from


National Park Service (2013). Washington: Grand Coulee Dam. National Park Services. Retrieved from


Rahr, G. (2017). Why protect salmon. Wild Salmon Center. Retrieved from


Rivinoja, P. (2005). Migration problems of Atlantic salmon (Salmo salar L.) in flow regulated rivers. Diss. (sammanfattning/summary) Umeå : Sveriges lantbruksuniv., Acta Universitatis agriculturae Sueciae, 1652-6880; 2005:114. ISBN 91-576-6913-9


U.S. Fish & Wildlife Service (2017a). Salmon of the west: Why are salmon in trouble? – dams. Retrieved from


U.S. Fish & Wildlife Service (2017b) Atlantic salmon. Retrieved from