LdMNPV and the Management of Gypsy Moths

Gypsy moth larvae consuming leaves

William Coville – Environmental Science

Julianne Foren – Animal Science

Catherine George – Horticultural Science

John Mazzone – Turf Grass Science and Managment

 

In the late 1860’s, a French scientist brought the gypsy moth to Massachusetts from Europe in the hopes of breeding disease-resistant genes into silkworms to improve and expand the silk industry (Liebhold, 2003). Due to his incompetence, a couple of his gypsy moth subjects made their way into the New England forest and found that they could live, breed, and thrive there. The carelessness of one scientist resulted in a gypsy moth invasion that persisted over the last hundred years and encompasses various ecosystems throughout the U.S. and Canada. Lymantria dispar dispar, known as the gypsy moth, is an invasive species that acts as a major pest of hardwood trees, particularly the dominant oak and aspen (Liebhold, 2003). As an example, a red oak that lies at the entrance of Quabbin Park in Belchertown, MA has been taken down due to it being mostly dead from gypsy moth defoliation (Miner, 2018). Iconic trees in parks around the country are not spared from the damage of gypsy moths and once enough damage sets in the trees are lost from the community. Not only does the gypsy moth cause an an aesthetic decline among these once beautiful hardwood trees, but they also play the role of the small beginning in a larger catalyst effect. They cause severe defoliation among the trees they feed on and cause harm to native species as well. One scientists economic greed and thoughtless actions have resulted in ecological destruction that has lasted and will continue to last well beyond his lifetime.

Continue Reading

Hydroelectric Power in The Snake River

 

Samantha Bruha: Animal Science

Shane Murphy: Horticulture

Jake Schick: Building Construction Technology

Ashley Artwork: Building Construction Technology

The Nez Perce people reside on the Snake River in North Central Idaho and still practice a hunter-gatherer way of life (Smith, 2018).  In 1855, The United States Government and five Native American tribes residing in Washington, Oregon, and Idaho signed the Treaty of Walla Walla (Smith, 2018)  Since the the original treaty, the Nez Perce Tribe has retained the right to fish, to hunt, and to graze livestock on unclaimed lands outside of the reservation (Smith, 2018).  Due to the addition of hydroelectric dams, beginning in the 1950’s on the Columbia and Snake Rivers, the Nez Perce Tribe has suffered a great loss of fishing resources from the effects of dams on the Salmon populations (Quirke, 2017).  Elliott Moffett, a 65 year old member of the Nez Perce Tribe, fights for Salmon in the lower Snake River (Quirke, 2017). “‘I like to say we are like the Salmon, we need clean, cold, swift running water. And they don’t have that because the dams have impounded their river,’” Moffett states (Quirke, 2017).  Moffett and his fellow activists at the Nimiipuu Protecting the Environment organization, have dedicated their lives to defending the environment and the Nez Perce rights (Support|Nimiipuu Protecting the Environment, 2018).  Every decision the tribe makes has “seven generations ahead” in mind and the scarcity of resources is making it harder and harder to teach future generations how to live off of the land (Support|Nimiipuu Protecting the Environment, 2018).

  Continue Reading

Rooftop Solar in The Sunshine State

 

James Locurto-  Geology

Nicholas Pomella- Building Construction Technologies

KathrynPreston- Animal Science

Sierra Humiston- Natural Resource and Fisheries

Around the world today, many people are living in undeveloped communities and are left without the gift of electricity. This lack of electricity is seen especially within the rural areas of  Sub-saharan Africa and South Asia, where around 89% of the communities are living

 without any form of electricity. However, this lack of electricity in impoverished areas can be alleviated by an invention that has been utilized for many years, this invention being solar power. Specifically, in the year of 2007, 2.5 million homes located in undeveloped areas gained the gift of electricity through the development of solar power systems on their homes (Grimshaw & Lewis, 2010). The use of solar power has the incredible potential to save these communities from underdevelopment and can propel them into living a life that everyone deserves. Communities without access to electricity are reaching for a cleaner future through the installment of solar panels on rooftops while the wealthy continue to burn fossil fuels, which is overall the cheaper and more environmentally harmful option.

Burning fossil fuels is a primary driver of the greenhouse gas effect and global climate change. Over the past few decades, levels of carbon dioxide and other greenhouse gases in the atmosphere have risen dramatically. This rise is attributed to three major sectors in the United States, the most prevalent being the electric power sector ma

king up 33% of greenhouse gas emissions (Solar Energy Industries Association, 2018). The production of electricity is pivotal in the functioning of the United States economy, with the industry valued at $250 billion with a demand function projected to increase in coming years (Morgan et al. 2016). Carbon dioxide and greenhouse gas emission levels, currently produced by the United States by way of traditional carbon emitting methods of energy production, such as coal, are not sustainable (Morgan et al. 2016). It is imperative that actions be taken to reduce these harmful emissions. Continue Reading

Urban golf courses as refuge for red-headed woodpeckers in Chicago

Authors: Vincent Frano, Horticulture Major; Cian Gulsen, Horticulture Major; and Anna Ashe-Simmer, Natural Resource Conservation Major.

 

In 1827, John J. Audubon published Birds of America, a 435 page book of full-color bird illustrations and accompanying field notes for each species (Audubon, n.d.).  There are ten pages devoted to American woodpeckers, including one small, Midwestern native: the red-headed woodpecker (Melanerpes erythrocephalus) (Audubon, n.d.).  In his observations, Audubon wrote, “It is impossible to form any estimate of the number of these birds seen in the United States during the summer months…” (Audubon, n.d.).  He claims he observed someone shoot more than one-hundred red-headed woodpeckers from a cherry tree in a single day (Audubon, n.d.). Clearly, they were abundant.

Though Audubon believed the bird to be common when he wrote his book, the red-headed woodpecker was already experiencing declines within its native range (Audubon, n.d.; Kaufman, n.d.).  A variety of factors are responsible for the decline of this species, but loss of critical oak-savanna habitat has been particularly detrimental (Koenig, Walters, & Rodewald, 2017). The red-headed woodpecker is native to the Midwestern oak-savanna, a habitat type that consists of a grassland understory interspersed with large, old-growth oak trees (Santiago, 2004).  The oak-savanna is important for this species for food resources (this species feeds on insects, invertebrates, berries, and acorns) and nesting habitat (they primarily nest in cavities in dead or decaying trees) (Dey & Kabrick, 2015; Kaufman, n.d.).  Prior to European colonization, the oak-savanna covered an estimated 27-32 million acres across the Midwest, an area roughly the size of Mississippi (Santiago, 2004; IPL.org, n.d).  But by 1985, only 6,442 acres of this critical habitat remained–0.02% of the original area (Santiago, 2004). The land was primarily cleared for lumber, farmland, and housing developments (Santiago, 2004).  

As urbanization has increased during the last century, the red-headed woodpeckers have simultaneously experienced more drastic population declines than ever before (Koenig, et. al., 2017).  Once a common and abundant species, red-headed woodpecker populations have declined by 60% since the 1960’s (Anderson & LaMontagne, 2016). It is currently listed on both the 2015 State of the Birds Report’s Yellow Watch List and as ‘near threatened’ in the International Union for Conservation of Nature’s 2017 report (Koenig, et. al., 2017).  Urban spaces are often void of adequate green space with dead or decaying trees for nesting or an abundance of oak trees as food supply, and are therefore unlikely to be inhabited by the red-headed woodpecker (Anderson & LaMontagne, 2016; Rodewald et al., 2005; Washington Department of Fish and Wildlife, 2011; Kaufman, n.d.).

Large metropolitan cities can pose particular problems for the red-headed woodpecker due to high human population density and expansiveness (Santiago, 2004).  Chicago, Illinois is the third largest metropolitan area in the United States and the largest within the range of the red-headed woodpecker, with a footprint of over 227 square miles (145,280 acres) (U.S. Census, 2010).  During the mid-1800s, Chicago experienced dramatic urbanization (Dreyfus, 1995). Between 1850 and 1860 the city’s population tripled and continued to grow with the advent of railroads, which led to the rapid transformation of land into urban area (Dreyfus, 1995). While population growth has slowed in the last century, population density has increased. The human population density in Chicago has increased by more than 1.2% between 2010 and 2016 (Kolko, 2017).  In comparison, New York’s density only rose by 0.5% in the same time (Kolko, 2017). As population density intensifies, so does housing development, and green space has become increasingly hard to find (Kolko, 2017). And while human development is expanding, only 8.5% of the land area in Chicago is designated public parks, compared to more than double this in New York City (Harnik & Donahue, 2012, p. 10). As urbanization expands, adequate habitat for the red-headed woodpecker has become increasingly limited.

Red-headed woodpeckers are important to the urban environment due to their ability to create wildlife habitat for other species (Wenny, et. al., 2011).  Woodpeckers forage and nest in snags, and as a result, create cavities in the tree that can be utilized by other species (Gentry & Vierling, 2008). In a study conducted in South Dakota, American kestrels, black-capped chickadees, nuthatches, bats, and Northern flying squirrels were found nesting in cavities created by red-headed woodpeckers.  These species are all secondary cavity nesters, meaning that they rely on excavators like the red-headed woodpecker to create cavities in snags (Gentry & Vierling, 2008). In urban areas, where biodiversity tends to be low, this species can provide important habitat for a variety of species that would otherwise not exist in the urban landscape.  

Red-headed woodpeckers can have positive impacts on the local urban ecosystem by improving the health of the surrounding oak trees (Santiago, 2004).  In Chicago, the native oak tree population has been in decline in recent decades (Nowak, et. al., 2013). Many of Chicago’s large, old oaks were planted before the city was urbanized, and are now reaching the end of their lifespans (Nowak, et al., 2013).  They have had difficulty seeding due to the large expanses of impervious surfaces (i.e. roads and sidewalks) and lack of acorn dispersers (Nowak, et. al., 2013; Wenny, et. al., 2011). Studies have shown that avian acorn dispersers (like the red-headed woodpecker) are key species in urban parks with large oak stands (Wenny, et. al., 2011).  In Stockholm, Sweden, Eurasian Jays (Garrulus glandarius) were found to be responsible for over 85% of acorn dispersal in an old-growth oak forest in an urban park (Hougner, Colding, Söderqvist, 2006, p. 370).  The oaks in this landscape consequently support communities of nesting birds and bats, lichens, and insects (Hougner, et. al., 2006). Red-headed woodpeckers also feed on oak acorns in the Midwestern US, and, like the Eurasian Jay, create large stores of acorns to feed on during winter months when insects are sparse (Smith, 1986).  Oaks in the Midwest rely on birds like woodpeckers to disperse their seeds, and woodpeckers benefit from the existence of oaks for winter food resources (Smith, 1986). In an urban landscape like Chicago, there are limited seed resources for woodpeckers and limited seed dispersers for oaks (Santiago, 2004). The mutualistic relationship between the two can be especially beneficial in an urban environment where biodiversity and resources are limited.

Red-headed woodpeckers are also important in urban environments for pest control.  In Chicago, for instance, there has been a significant rise in the emerald ash borer (Agrilus planipennis, abbv. EAB). EAB is an invasive beetle that devours the bark of ash trees, and is responsible for killing more than 54 million ash trees in Indiana, Michigan, and Ohio alone (Koenig & Liebhold, 2017).  This poses a significant problem in Chicago–ash trees make up more than 17% of the city’s street trees, not including the more than 300,000 ash that exist on private lands (i.e. private golf courses) (City of Chicago Department of Streets and Sanitation, 2018).  Breakouts of EAB are extremely costly due to the limited effectiveness of insecticides and the high cost of cutting down infected trees (Streets and Sanitation, 2018). However, studies have shown that woodpeckers significantly reduce EAB populations (Koenig & Liebhold, 2017).  Red-headed woodpeckers feed heavily on EAB larvae during breakouts. During winter, when EAB larvae are most accessible to insectivorous birds, red-headed woodpecker population increased more than 48.5% (Koenig & Liebhold, 2017). In Chicago, improving habitat for red-headed woodpeckers has the potential to reduce future outbreaks of EAB in the city.

Green spaces within urban environments are important for species like the red-headed woodpecker.  Golf courses are a particularly useful as habitat due to their abundance and size (Santiago, 2004). They are continuing to increase in number, with an 18% increase between 1987 and 1996 (Tanner & Gange, 2004, p. 138). Within the Chicago metro area there are over 200 golf courses, six of which are part of the city’s 8,100 acre municipal park district (Golf Advisor, n.d.). An average 18-hole golf course sits on 133 acres, and up to 70% is considered to be out of play areas that hold the potential to support wildlife (Saarikivi, 2016, p. 9). This translates to a potential 558 acres of wildlife habitat available on golf courses within Chicago’s municipal parks alone. However, the design and maintenance of golf courses are important factors that determine whether they can support a red-headed woodpecker population (Koenig, et. al., 2017). Water use, chemical applications, water features and habitat modifications are all concerns that must be addressed in determining ecological benefits. A number of studies show that golf courses can benefit biodiversity under sustainable and ecologically-friendly management practices (Colding et al., 2009; Jim & Chen, 2016; Kohler et al., 2004; Mankin, 2000; Salgot & Tapias, 2006; Tanner & Gange, 2005; Yasuda & Koike, 2004).

In urban settings, golf courses with forest cover can support a thriving red-headed woodpecker population by providing habitat that is scarce in the surrounding environment. Red-headed woodpeckers favor landscapes with forest cover, open understories, lower canopies, and proximity to open grassland (Anderson & LaMontagne, 2016; Rodewald et al., 2005). Given this, golf courses have the potential to support these birds by providing ideal habitat. Open areas, like fairways, allow the woodpeckers to forage for insects in flight (Anderson & LaMontagne, 2016). Additionally, waterways, such as constructed wetlands and fairway ponds, act as breeding sites for insects, the primary summer food of red-headed woodpeckers (Anderson & LaMontagne, 2016). Studies have shown that the red-headed woodpecker prefers nesting sites within close proximity to waterways, which may be related to insect abundance (Anderson & LaMontagne, 2016; Rodewald et al., 2005). This further suggests that golf courses, with their varied landscapes, can allow the species to thrive in urban environments.

One concern is the effect that daily use of courses by golfers and frequent maintenance activities might have on nesting woodpeckers. However, nesting activity on golf courses seems more related to the presence of favorable nesting sites than levels of human activity ((Rodewald, Santiago, & Rodewald, 2005). Of 17 golf courses studied in Ohio, 49 active nest were recorded, suggesting the woodpeckers are not likely dissuaded by golf course activity (Rodewald, Santiago, & Rodewald, 2005, p. 451). Courses with resident red-headed woodpeckers had twice as many snags and trees with dead branches compared to courses that lacked woodpeckers (Rodewald, Santiago, & Rodewald, 2005, p. 451). Therefore the preservation of naturalistic forest areas that allow for some dead and decaying trees is most important when determining the viability of a golf course as suitable habitat.

Golf courses seem promising as urban habitat for the red-headed woodpecker, although the ecological value of golf courses is hotly debated. Opponents assert that golf courses are ecologically barren and useless to wildlife (Saarikivi, 2016). The arguments against golf courses cite heavy chemical inputs of fertilizers and pesticides, combined with intensive management and resource use, as degrading any ecological value (Saarikivi, 2016). Indeed management styles are an important consideration that needs addressing in determining the ecological value of golf courses. Pesticide use is of particular concern in supporting red-headed woodpeckers since their primary food source is insects. Plants only take up about 5% of applied pesticides, meaning the rest ends up as runoff (Royte, 2017). When runoff reaches waterways, insect breeding grounds become contaminated, killing insect larva (Royte, 2017). This can impact bird populations by reducing available food sources provided by insects not considered pest of turf (Royte, 2017). Red-headed woodpeckers have been observed foraging for insects from turf areas, which could potentially expose them to insecticides used on golf courses (Rodewald, Santiago, & Rodewald, 2005). As little as a single corn seed coated in imidacloprid, a common pesticide also used for turf grass, is enough to kill birds the size of the red-headed woodpecker (Royte, 2017). Furthermore, imidacloprid has been shown to have toxic effects on sparrows, even at doses considered sublethal (Royte, 2017). Three days following exposure, the birds had lost 25% of their bodyweight (Royte, 2017). While sublethal doses may be larger for woodpeckers due to their difference in size from sparrows, this study shows that insecticides may have negative impacts on birds like red-headed woodpeckers. Improved chemical management plans that reduce pesticide and fertilizer inputs and emphasising naturalistic landscape designs allow golf courses to become thriving ecosystems capable of supporting a diversity of life (Mankin, 2000; Saarikivi, 2016).

Even with ecological management, one may argue that golf courses do not provide suitable habitat for birds like the red-headed woodpecker due to their specific habitat requirements. Generally the snags are removed for safety reasons, as rotting and dead trees or branches can fall and pose a hazard (Washington Department of Fish and Wildlife, 2011). Golf courses may also remove older or damaged trees due to management concerns. Large, older trees near tees and greens can compete with turf grass for water and produce extensive root systems that may disrupt greens (Lucas, n.d.). Damaged trees can take up canopy space, thus reducing sunlight available to nearby trees, which can reduce the growth of younger, healthier trees (Lucas, n.d.). These are legitimate concerns for golf course managers who wish to maintain the health and playability of turf areas. However, both older trees and damaged trees offer potential habitat to woodpeckers and other species (Gentry & Vierling, 2008; Washington Department of Fish and Wildlife, 2011). Dead limbs can provide nesting habitat; fungus infected trees provide both food and habitat; and old trees have the potential to become large snags capable of supporting diverse animal communities (Anderson & LaMontagne, 2016;  Gentry & Vierling, 2008; Washington Department of Fish and Wildlife, 2011). Adequate habitat can be maintained through careful design and management practices that allow for the preservation of snags without having to compromise golf course safety and turf grass health. Snags and decaying trees can be kept in the interior of wooded areas so that golfer safety is not compromised (Purcell, 2007). Midwestern savanna are dominated by oak species and by increasing tree density, these habitats promote species diversity in the understory vegetation (Dey & Kabrick, 2015). Woodland edges with a selection of shrubs can act as a screen for untidy natural woodland interiors and help improve golf course aesthetics (Purcell, 2007).

Integral design features, like forested areas and constructed wetlands, can create a favorable ecosystem to help support red-headed woodpecker diversity. (Love, 2008). A typical 18-hole golf course has an average of 93 acres that are considered to be rough areas of the hole or out of play (Saarikivi, 2016, p. 9). These areas are unused by golfers, and have the potential to provide habitat for a variety of birds including the red-headed woodpecker (Saarikivi, 2016). Species like the eastern bluebird, tree swallow, purple martin, red-cockaded woodpecker, and osprey can utilize these rough areas as habitat if it is improved for wildlife (Saarikivi, 2016; Rodewald et al., 2005; Washington Department of Fish and Wildlife, 2011). Naturally existing trees are an integral component of golf courses that provide specific areas of vegetation required for connectivity of adjacent wildlife (Love, 2008). While populations of the red-headed woodpecker have plummeted due to urbanization, the species thrives in the habitats of golf courses due to the sheltering canopy of large trees in the area (Saarikivi, 2016). In a study focused on the red-headed woodpecker population in Cook County, IL (a county that includes the city of Chicago), researchers found that only 7 of the 34 nesting trees were located in city parks while the remaining 27 appeared in forested areas of the city (Anderson & LaMontagne, 2015, p. 305). This suggests that the woodpecker needs large, uninterrupted areas of green space as opposed to isolated parks (Anderson & LaMontagne, 2015).  A golf course is a large enough green space to act as habitat for the woodpecker if the area of forest cover is increased (Saarikivi, 2016).

To effectively promote the red-headed woodpecker population in Chicago, golf course managers should convert rough areas and out-of play areas to mimic the oak-savanna ecosystem.  Woodpeckers need low tree density, with low to moderate canopy cover, and sufficient abundance of insects, acorns, and visible fungus on trees (food source) in order to nest in the area (Kaufman, n.d.; Anderson & LaMontagne, 2015). Mid-western oak-savannas are dominated by oak species, but tree reproduction is patchy, resulting in a spacious layout of trees (Dey & Kabrick, 2015). The uneven distribution of the tree canopies in savannas and low density creates a range of canopy cover from full to open space (Dey & Kabrick, 2015).  A complete management system must be instituted in order to promote an artificial oak-savanna habitat on golf courses. Introducing long-lasting oak species like the Post Oak (that lives over 400 years), can distribute a number of seeds for regeneration, and then be removed before it dominates the landscape (Dey & Kabrick, 418). Highly monitored prescribed burning or chemical applications, as well as tree removal, can aid in the decrease of tree density when it becomes too high (Dey & Kabrick, 2015). Over time, the habitat will thrive with a varying age-range of its tree species which can sustain the ideal tree density required by the red-headed woodpecker (Dey & Kabrick, 2015; Anderson & LaMontagne, 2015).  Restoration of these oak-dominated ecosystems on golf courses would promote the population of red-headed woodpeckers, which would then promote acorn dispersal of oaks in the area, and the health of both oaks and red-headed woodpeckers would be vastly improved (Dey & Kabrick, 2015; Wenny et. al., 2011). By creating an artificial oak-savanna habitat on golf courses within the city of Chicago, critical habitat area for the red-headed woodpecker can expand, leading to potential increases in its population (Dey & Kabrick, 2015; Santiago, 2004).

Proper water quality is one of the most vital components for maintaining suitable woodpecker habitat, and specific design features can improve this (Love, 2008). Constructed wetlands and water features are important design components that ensure uncontaminated water. Clean water promotes tree and vegetation development, which in turn allows for a clean environment and drinking water for the woodpeckers. Constructed wetlands can potentially remove between 95% and 100% of nitrogen and up to 74% of phosphorus resulting from fertilizer applications (Kohler et al., 2004, p. 291- 294). Without proper water quality, the tree density and fungal requirements favored by red-headed woodpeckers wouldn’t be as readily available because the habitat itself wouldn’t grow. Wetlands are habitat for many protected wildlife and plants and can be implemented on golf courses (Love, 2008). Constructed wetlands can positively affect surrounding waterways by acting as a filtration system, reducing contaminants in runoff from golf courses and surrounding urban areas (Kohler, Poole, Reicher, & Turco, 2004). Sand caps, bioswales (sloped mounds on the course), wet cells (low areas that collect water), and tall grass buffers also help to reduce surface runoff (Miltner, 2007). Sand caps are a set depth of sand underneath the course that allow for infiltration and stormwater storage and bioswales, wet cells, and tall grass buffers are strategically placed on the course to trap water in the turfgrass where it is filtered out by microorganisms and plant roots (Miltner, 2007). Tall grass buffers located on the edge of bodies of water intercept polluted runoff between the golf course and the body of water and can significantly reduce nutrient and sediment runoff (Mackay, 2001).  A buffer is maintained with plants that reduce stormwater flow and pollution runoff (Mackay, 2001). Water features provide aesthetic appeal as well as improve erosion control and stormwater management which aids in the quality of the watershed of the area (Love, 2008). If properly designed to coordinate with pre-existing drainage patterns, constructed wetlands can help reduce fertilizer and pesticide runoff (Love, 2008). Grass cover also helps to reduce runoff; when turf is properly managed to maintain ample coverage, runoff can be reduced by 8mm per year compared to unmanaged conditions (Mankin, 2000, p. 265). This is because the turf forms a tightly compact system of roots and a grass canopy that make it very difficult for surface runoff to “run”and leach into soil or waterways (Mugaas, Agnew, Christians, 2005). Sustainable management practices benefit biodiversity by preserving a thriving ecosystem that can also improve water quality, making golf courses a potential safe-haven for the declining woodpecker population.

However, not all golf course owners are willing to voluntarily make changes to their courses for the sake of threatened species like the red-headed woodpecker (Looney, 2017; Rubin, 2017).  Conservation easements offer a promising framework to incentivise land conservation and encourage golf course owners to adopt these sustainable management practices (Rubin, 2017). In 1976, Congress passed the Tax Reform Act, which included a conservation easement program to incentivize landowners to donate their land to conservation organizations (Parker, 2005).  In return, landowners receive a tax deduction equal to market value of the land that is donated (Looney, 2017). Landowners agree to permanent development restrictions on their land, and all development rights are donated to a land trust (Rubin, 2017). Essentially, this ensures that the land is protected from any further development (even if the land is later sold or divided), but the landowner still has the rights to continue managing it for certain government-approved uses (Parker, 2005).  These uses are intended to be of low impact to the environment, such as for historical importance, agricultural use, wildlife habitat, and/or outdoor recreation (Parker, 2005). Golf courses, being primarily used for outdoor recreation and having the potential to provide wildlife habitat, are therefore eligible for this conservation easement program (Parker, 2005). Golf courses that are protected under conservation easement programs can never be converted to housing developments, which is especially important in urban spaces like Chicago, where green space is scarce (Rubin, 2017; Harnik & Donahue, 2012).  

The conservation easement program has been effective at promoting wildlife habitat on some golf courses.  The Merit Club is an example of a golf course that has successfully converted out-of-play areas into wildlife habitat after enrolling in the conservation easement program (Taggart & Roe, 2010). Located in the Chicago suburbs, the golf course is part of a network of protected lands that are home to 14 endangered species (Taggart & Roe, 2010, p. 393). The 318 acre property includes 165 acres of restored tall-grass prairie, wetlands, and oak-savanna. This land provides valuable habitat for native species (Taggart & Roe, 2010, p. 393). The Eagle Ridge Golf Club in Ocean County, New Jersey is another example of conservation easement success. The coastal golf club maintains native grasslands, riparian habitats, and wetlands that are home to 58 species of birds and numerous other wildlife (NJ Audubon Society, 2014, p.13) . In addition to offering a pristine environment for playing golf, the golf club provides opportunities to educate the public on land stewardship and conservation. In this way they encourage members of the community to implement habitat improvements on their properties, thus creating interconnected habitat (NJ Audubon Society, 2014). Both golf clubs are a testament to conservation easement programs at work. While regular monitoring and maintenance are required to ensure natural areas remain intact, money gained from the conservation easement program is intended to support the enhancement of natural areas (Rubin, 2017).

However, conservation easements have been misused in recent times, especially when concerning golf courses (Rubin, 2017). Kiva Dunes is a 368 acre golf course located along the coast of Alabama.  Shortly after constructing the course in 1992, the property owner donated the land as a part of a conservation easement and consequently received a $29 million tax deduction (Deal, 2013, p. 1590; Looney, 2017, p. 19).  President Donald Trump received a $39.1 million tax deduction in 2005 for a conservation easement on one of his New Jersey golf courses (Rattner, 2016). These easements were incredibly lucrative for landowners, yet their benefits towards conservation are debatable (Looney, 2017). Currently the IRS is the primary organization providing oversight of conservation easements (Moorhead, 2016). They have contested and brought to court questionable tax deductions, such as the one claimed by Kiva Dunes (Moorhead, 2016). However, the IRS is not well equipped to monitor conservation easements regularly and they are not always successful in contesting golf course tax deductions (Moorhead, 2016).

Critics of the easement program have argued that golf courses should be excluded from tax deduction incentive altogether due to their costliness and ineffectiveness (Rattner, 2016).  However, in urban spaces, golf courses have incredible potential to act as wildlife habitat (Saarikivi, 2016). By creating clearer standards and specific management requirements, conservation easement programs can effectively promote habitat for the red-headed woodpecker on golf courses in Chicago.  Organizations like Audubon International are already working with some golf course owners on a voluntary basis to improve the quality of wildlife habitat (Audubon International, n.d.). Currently the non-profit organization works with golf courses to become a Certified Audubon Cooperative Sanctuary (Audubon International, n.d.). There are already 8 golf courses within Chicago that are active members of this program (Audubon International, n.d.). Interested golf courses must undergo stringent habitat, water management, and pest management practice reviews in order to be approved (Audubon International, n.d.). Every three years a review process is required in order to maintain membership (Audubon International, n.d.). Those that do not meet their criteria are rejected from the program (Audubon International, n.d.). For those that do not yet meet the necessary criteria, Audubon International consults with golf course owners to develop an ecological management and land stewardship plan (Audubon International, n.d.).

A similar model could be used by the federal government to create a Conservation Easement Oversight Commission (CEOC) that could oversee and approve all land donations by golf courses, ensuring that donated land is maintained for conservation purposes (State Auditor of Colorado, 2012). As part of this, the CEOC must keep detailed records of conservation easement holders that includes annual reviews of donated land. Like the Audubon International program, golf courses under conservation easements would be required to uphold certain standards. In addition to the CEOC, the Fish and Wildlife Service would partner with golf courses to ensure that donated land is properly maintained. Golf courses would be obligated to develop an environmental plan that is required to include wildlife and habitat management, water conservation, chemical use reduction and safety, and water quality management (Audubon International, n.d.).  Each golf course would have a management plan that focuses on species or community of concern in the area (i.e. red headed woodpecker on Chicago golf courses), and management techniques would be tailored to meet their habitat requirements (Audubon International, n.d.). Through these additional oversight measures and well defined requirements, golf course conservation easements can become effective in incentivising golf courses to create wildlife habitat.

Some may argue that improving habitat on the course will be costly due to the costs of hiring maintenance staff and landscape designers.  However, the long term costs of maintaining open woodland habitat instead of turfgrass can reduce overall costs (Audubon International, n.d.; Kiss, 1998; Purcell, 2007). Reduced chemical inputs, such as fertilizers and pesticides, will reduce overhead costs (Kiss, 1998). Additionally, taking a hands off approach to out of play areas will allow for naturalistic environments, and can reduce costs associated with tree and landscape maintenance (Kiss, 1998). Golf courses are a large economical resource that have the ability to make significant environmental impacts just by purposefully designing and managing for biodiversity and ecological improvements (Saarikivi, 2016). Furthermore, tax incentive dollars can be utilized to cover the initial costs associated with design and maintenance improvements.

The red-headed woodpecker plays an important role in ecosystem dynamics in the Midwest, and has the potential to benefit the city of Chicago if golf course habitat is improved (Anderson & LaMontagne, 2015).  Woodpeckers are important for pest control within cities and can positively impact local biodiversity through seed dispersal,  (Koenig & Liebhold, 2017). However, as urbanization expands in the Midwest, critical oak-savanna habitat is becoming increasingly limited, leading to significant declines of red-headed woodpecker populations in the past decades (Blewett & Marzluff, 2005; Kight, et. al., 2012). Expanding woodland on a golf course that mimics oak-savanna habitat can create habitat for this woodpecker, and consequently create habitat for other species of birds, mammals, and insects (Dey & Kabrick, 2015).  However, an incentive program is needed to promote sustainable golf course management techniques (Looney, 2017). Conservation easements are promising options to incentivise land stewardship, but currently lack sufficient oversight (Gilligan, 2018; NJ Audubon Society, 2014; Taggart & Roe, 2010; Looney, 2017). With stricter standards and specific management requirements, conservation easement programs can effectively promote habitat for the red-headed woodpecker on golf courses in Chicago.  Implementation of this revised program on a nationwide scale could create important areas of refuge for other wildlife besides the red-headed woodpecker, and contribute to habitat restoration across the country Washington Department of Fish and Wildlife, 2011; Saarikivi, 2016; Santiago, 2004).

 

References

Audubon International (n.d.). Audubon Cooperative Sanctuary Program for Golf Courses FAQ.  Retrieved from https://auduboninternational.org/acspgolf-faq

Audubon, J.J. (n.d.) Plate 27: Red headed woodpecker.  National Audubon Society.  Retrieved from https://www.audubon.org/birds-of-america/red-headed-woodpecker

Christina M. Blewett, & John M. Marzluff. (2005). Effects of urban sprawl on snags and the abundance and productivity of cavity-nesting birds. The Condor: Ornithological Applications, 107(3), 678-693. Doi: https://doi.org/10.1650/0010-5422(2005)107[0678:EOUSOS]2.0.CO;2

City of Chicago Department of Streets and Sanitation (2018).  Emerald Ash Borer.  Retrieved from https://www.cityofchicago.org/city/en/depts/streets/provdrs/forestry/svcs/emeral_ash_borerpestofashtrees.html

Colding, J., Lundberg, J., Lundberg, S., & Anderson, E. (2009). Golf courses and wetland fauna. Ecological Applications, 19(6), 1481-1491. doi:10.1890/07-2092

Deal, K. (2013).  Incentivizing conservation: restructuring the tax-preferred easement acceptance process to maximize overall conservation value.  The Georgetown Law Journal, 101, 1587-1618.  Retrieved from https://georgetownlawjournal.org/articles/113/incentivizing-conservation-restructuring-tax-preferred/pdf

Dey, D. & Kabrick, J. (2015). Restoration of Midwestern oak woodlands and savannas. United States Forest Service.  Retrieved from https://www.fs.fed.us/nrs/pubs/jrnl/2015/nrs_2015_dey_001.pdf

Dreyfus, B. (1995).  The City Transformed: Railroads and Their Influence on the Growth of Chicago in the 1850s. Retrieved from https://www.hcs.harvard.edu/~dreyfus/history.html

Gilligan, G. (2018). Most of River’s Bend golf course put under conservation easement.

Retrieved from http://www.richmond.com/business/local/most-of-river-s-bend-golf-course-put-under-conservation/article_9d3dcfb5-19be-502e-b1cc-a34d6ee6e8e0.html

Golf Advisor. (n.d.). Chicago Golf.  Retrieved from https://www.golfadvisor.com/destinations/56-chicago-il/

Harnik, P., & Donahue, R. (2012).  2012 City Park Facts. The Trust for Public Land.  Retrieved from https://www.tpl.org/sites/default/files/cloud.tpl.org/pubs/ccpe-cityparkfacts-2012.pdf

Hougner C, Colding J, Söderqvist T. 2006. Economic valuation of a seed dispersal service in the Stockholm National Urban Park, Sweden. Ecological Economics, 59, 364–374.  https://doi.org/10.1016/j.ecolecon.2005.11.007.

IPL.org. (n.d.). States Ranked by Size and Population. Retrieved from http://www.ipl.org/div/stateknow/popchart.html

Jim, C., & Chen, W. (2016). Legacy effect of trees in the heritage landscape of a peri-urban golf course. Urban Ecosystems, 19(4), 1717-1734.  doi:10.1007/s11252-016-0562-0

Kaufman, K. (n.d.). Red-headed woodpecker.  Audubon Guide to North American Birds.  Retrieved from http://www.audubon.org/field-guide/bird/red-headed-woodpecker

Kiss, D. J. (1998). An environmental frame of reference: Golf course design in out-of-play areas. Retrieved from http://hdl.handle.net/10919/36683

Koenig, W.D., Walters, E.L., & Rodewald, P.G. (2017).  Testing alternative hypotheses for the cause of population declines: the case of the red-headed woodpecker.  The Condor: Ornithological Applications, 119(1), 143-154.  doi: 10.1650/CONDOR-16-101.1

Koenig, W.D., & Liebhold, A.M., (2017).  A decade of emerald ash borer effects on regional woodpecker and nuthatch populations.  Biological Invasions, 19(7) 2029–2037. Doi: https://doi.org/10.1007/s10530-017-1411-7

Kohler, E. A., Poole, V. L., Reicher, Z. J., & Turco, R. F. (2004).  Nutrient, metal, and pesticide removal during storm and non-storm events by a constructed wetland on an urban golf course. Ecological Engineering, 23(4), 285-298.  doi:10.1016/j.ecoleng.2004.11.002

Kolko, J. (2017, May 22).  Seattle climbs but austin sprawls: the myth of the return to cities.  The New York Times.  Retrieved from https://www.nytimes.com/2017/05/22/upshot/seattle-climbs-but-austin-sprawls-the-myth-of-the-return-to-cities.html

Looney, A. (2017).  Charitable contributions of conservation easements.  Economic Studies at Brookings.  Retrieved from https://www.brookings.edu/wp-content/uploads/2017/05/looney_conservationeasements.pdf

Lucas, L. (n.d.). Problems Associated with Trees on Golf Courses. Retrieved from https://www.carolinasgolf.org/images/CarolinasGolf/site/agronomy/tree.htm

Mackay, J. (2001). On course with nature: what is a buffer? USGA Green Section Record.  Retrieved from http://gsrpdf.lib.msu.edu/ticpdf.py?file=/2000s/2001/010924.pdf

Mankin, K. R. (2000). An integrated approach for modelling and managing golf course water quality and ecosystem diversity. Ecological Modelling, 133(3), 259-267. Retrieved from Science Direct.

Miltner, E. (2007). Protecting Water Quality On and Off the Golf Course: Design features for filtering fertilizer nutrients.  Retrieved from http://gsrpdf.lib.msu.edu/ticpdf.py?file=/2000s/2007/070107.pdf

Moorhead, J. (2016). Trump’s Golf Courses Expose Conservation Quagmire.  Retrieved from https://www.landthink.com/trumps-golf-courses-expose-conservation-quagmire/

Mugaas, R., Agnew, M., Christians, N. (2005). Turfgrass management for protecting surface water quality. Regents of The University of Minnesota. Retrieved from http://cues.cfans.umn.edu/old/extpubs/5726turf/DG5726.html

NJ Audubon Society. (2014). NJ Audubon Corporate Stewardship Annual Meeting. NJDEP. Retrieved from www.njaudubon.org.

Nowak, D.J., Hoehn III, R.E., Bodine, A.R., Crane, D.E., Dwyer, J.F., Bonnewell, V., & Watson, G. (2013).  Urban trees and forests of the Chicago region. United States Forest Service.  Retrieved from https://www.fs.fed.us/nrs/pubs/rb/rb_nrs84.pdf

Parker, D. (2005). Conservation easements: a closer look at federal tax policy. Perc Policy Series, PS(34), 1-23. Retrieved from www.perc.org

Rattner, S. (2016, May 13).  Donald Trump and the art of the tax loophole.  New York Times.  Retrieved from https://www.nytimes.com/2016/05/13/opinion/campaign-stops/donald-trump-and-the-art-of-the-tax-loophole.html

Royte, E. (2017).  The same pesticides linked to bee declines might also threaten birds.  Audubon Magazine.  Retrieved from http://www.audubon.org/magazine/spring-2017/the-same-pesticides-linked-bee-declines-might

Rubin, R. (2017, June 1).  When a conservation tax break protects backyards and golf courses.  Wall Street Journal.  Retrieved from https://blogs.wsj.com/economics/2017/06/01/when-a-conservation-tax-break-protects-backyards-and-golf-courses/

Saarikivi, J. (2016). Biodiversity in golf courses and its contribution to the diversity of open green spaces in an urban setting. Retrieved from http://ethesis.helsinki.fi

Salgot, M., & Tapias, J. C. (2006). Golf courses: Environmental impacts. Tourism and Hospitality Research, 6(3), 218-226. Retrieved from Sage Journals.

Santiago, M.J., (2004).  Conservation of Red-headed woodpeckers (Melanerpes erythrocephalus) on Midwestern golf courses: A case study in Ohio. Retrieved from: https://senr.osu.edu/sites/senr/files/imce/files/TWEL/Santiago%2C%20Melissa-Thesis.pdf

Smith, K. (1986).  Winter population dynamics of three species of mast-eating birds in the eastern United States.  The Wilson Bulletin, 98(3) 407-418.  Retrieved from https://sora.unm.edu/sites/default/files/journals/wilson/v098n03/p0407-p0418.pdf

State Auditor of Colorado. (2012). Performance Audit. Conservation Easement Tax Credit  Department of Revenue Division of Real Estate. Retrieved from http://www.leg.state.co.us

Taggart, J. B., & Roe, C. E. (2010). Golf course conservation easements with natural habitats: a need for clarity. Natural Areas Journal, 30(4) 392-395.  doi: https://doi.org/10.3375/043.030.0404

Tanner, R., & Gange, A. (2005).  Effects of golf courses on local biodiversity.  Landscape and Urban Planning, 71, 137-146.  doi:10.1016/j.landurbplan.2004.02.004

United States Census Bureau. (2010). Census 2010 Population Profile. Retrieved from http://www.census.gov/2010census/popmap/

United States Department of Agriculture (2012).  National Agricultural Statistics Service.  Retrieved from https://www.agcensus.usda.gov/Publications/2012/Online_Resources/Highlights/Farms_and_Farmland/Highlights_Farms_and_Farmland.pdf

Wenny, D. G., Devault, T.L. , Johnson, M.D., Kelly, D., Sekercioglu, C.H., Tomback, D.F., & Whelan C.J. (2011).  The need to quantify ecosystem services provided by birds. The Auk, 128(1), 1-14.  DOI: 10.1525/auk.2011.10248

Yasuda, M., & Koike, F. (2006). Do golf courses provide a refuge for flora and fauna in Japanese urban landscapes? Landscape and Urban Planning, 75(1), 58-68. 10.1016/j.landurbplan.2004.12.004

 

Contamination Risks Associated with In situ-Recovery Mining for Uranium

Authors:

Falina Foroughirad, Geoscience

Ruth Russell, Natural Resource Conservation

Thomas Meyers, Building Construction Technology

 

During the Cold War, uranium mining in the United States took off as an industry to keep up with the Soviet Union in the nuclear arms race. One of the richest uranium deposits in the US lies beneath the Navajo Nation. The Environmental Protection Agency (2015) estimates that from 1944 to 1986, nearly 30 million tons of uranium ore was extracted from Navajo lands under leases with the Navajo Nation.  Many of the Navajo tribe members secured positions as miners, working in close proximity to radioactive material that was later discovered to be the cause of high rates of lung and bone cancer. Despite the fact that radon gas inhalation was proven to be statistically correlated with lung cancer, legislation failed to protect the Navajo tribe from the lasting effects of mining. Mine tailings of ore residue were scattered throughout the land and repurposed for local infrastructure, and the groundwater was contaminated without any effort towards complete remediation until 2007. At current, the EPA estimates that 30% of all Navajo people still lack access to uncontaminated drinking water and more than 500 abandoned uranium mines shafts are now estimated to lie on Navajo land (EPA, 2015).  Problems regarding uranium contamination include complications during mining that can result in leaks or improper waste disposal, and the uncertainty of the uranium mine stability after they have been closed. Stopping contamination is important to protect people like the Navajo tribe members who have been exposed to uranium mining’s negative impacts. Increasing monitoring of mines after closing is a critical step in maintaining access to clean drinking water.

Continue Reading

Shifting Subsidies From Corn Ethanol to Solar

Evan Chakrin: Horticulture

Ryan White: Animal science

Tim Miragliuolo: Building and Construction Tech.

 

 

A sun tracking solar panel in a corn field. (http://www.shutterstock.com)

 

 

Nobody likes wasteful government spending on programs that don’t benefit consumers or the environment, but that is exactly what’s happened with decades of corn ethanol subsidies. The American taxpayer is forced to underwrite the production of an inefficient energy source, and forced again to buy its product when used in gasoline mixtures at fuel stations across the country. Gasoline-ethanol mixes cost consumers miles per gallon and clog the fuel systems of seasonal use equipment and recreational vehicles (Regalbuto, 2009; Patzek et al., 2005) and do little to help the environment (Vedenov & Wetzstein, 2008). After having cost US taxpayers over 40 billion dollars from 1978-2012 (Melchior, 2016), federal tax code supports over 26 billion in subsidies for corn ethanol through 2024 (“Federal subsidies”, 2015). It is time to shift federal incentives toward truly renewable energy systems, and solar photovoltaic [PV] technology provides an excellent answer to our future energy needs. Due to the relative land usage, flexibility of installation, and greenhouse gas emission efficiency of PV systems, we believe that all future corn ethanol tax incentives should be redirected toward the installation of photovoltaic solar panel systems either in isolated systems or through collocation with viable biofuels and vegetable crops. Continue Reading

Micro Irrigation: How to Make Every Drop Count

 

Mike Wissemann is a tenth generation farmer from Sunderland, MA. His farm, Warner Farm, has been an established source of crops for the surrounding towns since 1718. Mr. Wisseman inherited three hundred years of farming techniques and tricks. He spent his high school years working on the family farm and went on to receive a degree in Plant and Soil Science from the University of Massachusetts Amherst. Mr. Wisseman successfully expanded the farm and his crops from potato/onion crop to a wide variety of fruits and vegetables (Schwarzenbach, 2017). However, no amount of experience or education stopped him from losing tens of thousands of dollars when the Northeast experienced one of its worst droughts in decades (Kaufman, 2016). Farmers all over the Northeast were left scrambling to find enough water for their crops–some were even reduced to bucket brigades to get enough water to their acres of farmland (Shea, 2016).

Despite their best efforts, farmers could not plant their second round of crops. Even generally fertile farm areas such as those by rivers had major problems trying to irrigate (Schwarzenbach, 2017). When your entire livelihood depends on a natural resources (such as water), climate change and increasing drought years are a direct danger to your livelihood.

As climate change continues, droughts like the one experienced by Mr. Wissemann, are going to become more common.  Rising temperatures associated with climate change have impacted approximately 80% of monthly heat records (Coumou, Robinson, & Rahmstorf, 2013). As a rule, as temperature increases, the rate at which an organism produces energy increases as well (Hansen, Smith, & Criddle, 1998). This would be beneficial to productivity, if increased temperatures did not have the additional effect of decreasing the amounts of water available in soil. Think about the application of heat to a pot of water; when the water boils, the water escapes the pot in the form of vapor into the air. The same process holds true when heat is applied to the ground; the water escapes the soil in the form of vapor. This process leaves the soil devoid of water for the plants and leads to drought. The U.S. is a top exporter of agricultural goods and climate change is going to have a significant impact on our agriculture (Joint Economic Committee Democratic Staff, 2012). Between 2000 and 2015, 20-70% of the United States experienced abnormally dry conditions each year (Environmental Protection Agency [EPA], 2016). This does not bode well for the agricultural industry as droughts have an intensely negative impact on crops.

Decreased soil moisture means less water is available for the plants. This both leads to water stress and exacerbates heat stress. Water stress is a variety of plant symptoms that negatively affect plant productivity. It also aggravates heat stress which is when a plant suffers significant tissue damage because of high temperatures or high soil temperatures (Hall, 2017). The same way that humans expect to catch a cold from being overly cold or hungry for too long, plants are more susceptible to disease after being dehydrated and overheated for too long. When leaves of corn are subjected to drought-like conditions, they contained 69% more diseased biomass (Vaughan et al., 2016). When a plant is dehydrated, tiny openings in the leaves close to avoid further loss of water through evaporation. When these openings close, the leaf is incapable of expelling oxygen and taking in carbon dioxide–as if the plant is holding its breath (Osakabe, Osakabe, Shinozaki, & Tran, 2014). Increased heat stress and decreased water availability reduces the plant ability to breathe and thus make food. This results in a weakened plant that is more susceptible to disease (Irmak, 2016; Vaughan et al., 2016).

To get a better sense of the effects of combining heat and water stress, these processes can be related to the human body. Heat stress is similar to running; it elevates your heart rate.  If you run forever without rest, you will pass out, and most likely die without medical attention. Water stress, which is like holding your breath, will also eventually kill you, but can be done for some length of time. When heat stress and water stress occur simultaneously, it is like running a marathon while holding your breath. Such a venture would result in near-immediate loss of consciousness, and death without medical attention. Similarly, a plant under both water and heat stress, sees a drastic decrease in productivity, and eventual death without a change in conditions.

We are exceptionally vulnerable to these effects of climate change on our crops due to our current method of water usage. Current estimates reveal that 70% of freshwater withdrawals go towards irrigation uses (Block, 2017) and a large amount of this water could be conserved. A widely accepted, but inefficient method of irrigation is furrow or gravity irrigation. It accounts for 35% to 42% of irrigation systems in the United States (Subbs, 2016). Compared to a more modern technique known as drip irrigation, it wastes 43.6 % of total water use (Tagar et al., 2012,  p. 792). Furrow irrigation involves planting crops in rows with small trenches running in between them. Water is then flown down the trenches that run alongside the crops (Perlman, 2016). Farmers across the nation use furrow irrigation because there are lower initial investment costs as well as a lower cost for pumping water (Yonts, Eisenhauer, & Varner, 2007). Unfortunately, it also wastes a lot of water. The water is not targeted on the roots and much of it goes to wetting soil around the plant and not the actual root. This is inefficient because the roots are the plant structure that absorb the water (Lamont, Orzolek, Harper, Kime, & Jarrett, 2017). The water that is not on the roots is more likely to be lost as soil evaporation which accounts for over 50% water lost in furrow irrigation (Batchelor, Lovell, & Murata, 1996). Traditional forms of irrigation irrigate the entire field, wasting precious water on soil that will not be in contact with the plant’s roots (Lamont et al., 2017).

Plants need fresh water to survive but, unfortunately, water is a finite resource. Although the water covers 70% of the planet, only 2.5% of it is fresh water. This freshwater is “stored” in places like rivers, lakes, ice, and, perhaps most importantly, in the ground. Surface water seeps down through layers of dirt and rock to recharge groundwater storage areas, more commonly known as aquifers. Aquifers are made up of types of rock particles, such as sand and gravel,  that have enough space between them that the water can happily live. We need freshwater for activities ranging from drinking to manufacturing processes to agricultural irrigation. And about 50% of the freshwater we use for these activities is derived from groundwater (Dimick, 2014).  

The main differing factor between groundwater and surface water as a source of fresh water is the time it takes for these reserves to be recharged. Surface waters, such as lakes, can be replenished with seasonal rains. Groundwater on the other hand can take anywhere from months to tens of thousands of years to build up a reserve because the water has to flow through layers and layers of soil and rock to reach the aquifer. It can also be left untouched for long periods of time as it is not susceptible to the same rules of constant evaporation as surface water.

Agriculture has been using up this resource far faster than it can be replaced. It may take years to build up a water reserve, but it only takes seconds to pump it out. For example, the Ogallala Aquifer, which is located under the Great Plains of the United States, recharges at a rate of less than 1 inch per year (Kromm, 2017). However, over the past decade water has been withdrawn at a rate of approximately 18 inches per year. It is estimated that in the next 50 years, 69% of the Ogallala Aquifer will be gone. This depletion of groundwater resources is happening all over the country from the Colorado River Basin to the California Central Valley to the North China Plain to the Middle East (Dimick, 2014).

We cannot fix climate change, however we can mitigate its effects through effective water usage. Using the method of Micro Irrigation also known as drip irrigation, we can conserve water and mitigate the negative effects of water and heat stress on crops. Micro Irrigation involves using pressurized piping that drips water directly on the roots of the plant. It consists of a mainline distribution, sub-mainline (header), drip lines, filters, pressure regulators, and chemical injectors. Laying down an underground network of pipe which has an opening at the base of each plant. Using a pressurizing system to efficiently deliver water directly to the root system of the plant, which is the part that absorbs water (Lamont et al., 2017).

This decreases the water stress on the plants because it ensures that the plants are receiving enough water. Adequate water leads to healthier and more disease resistant crops (Irmak, 2016; Vaughan et al., 2016).

Not only does this method create better living conditions for the plants, it also conserves an incredible amount of water. This will be especially key as water availability decreases with climate change. Drip irrigation improves efficiency of water on farms by reducing the soil evaporation and drainage losses. In terms of conservation, drip irrigation may require less than half the water needed in a sprinkler irrigation method (Lamont et al., 2017). Since the water is applied directly to the roots, no water is wasted on non-productive areas, resulting in even more water efficiency (Lamont et al., 2017). Drip irrigation was much more efficient than furrow irrigation saving 56.4% of the water in comparison. (Tagar et al., 2012,  p. 792).

However, traditional irrigation wastes water in a way that drip irrigation does not. In terms of the framework of increasing water demand with climate change, agricultural methods that recognize water as a valuable, finite resource need to be implemented.  

Furrow Irrigation is cheaper to install initially, but is far more water and energy inefficient compared to drip irrigation. To install, depending on the type of furrow irrigation and the size of the farm, it will be anywhere from $13 to $70 per acre (Wichelns, Houston, Cone, Zhu, Wilen, 1996). There are more repair costs and maintenance costs for this particular type of irrigation and can be anywhere from $13 to $90 annually per acre (Wilchens et al., 1996). While it is cheaper initially, drip irrigation uses water and energy so much more efficiently, that the long term savings of drip irrigation far outweigh the initial cheapness of the furrow irrigation.

Drip Irrigation costs approximately $500- $1,200 per acre, or potentially more, to install (Simonne et al., 2015). For reference, Louisiana Delta Plantation has over 26,000 acres (Honey Brake Lodge, 2017). An acre is about the size of a football field, which would make that farm the size of 26,000 football fields put together. Even at the lowest cost, converting to Drip Irrigation would cost approximately $13 million for the Louisiana Delta Plantation. Even though the initial investment is hard to grasp in terms of magnitude, eventually the system will pay for itself by maintaining crop yields, even in dry years, and lowering energy and water costs (Stauffer, 2010; Lee Engineering, 2017). How much money will be saved and how many years it will take for the new system to pay for itself is largely dependent on the size of the farm and what kind of crop is being grown, therefore, there are not any specific numbers because of the huge variability of farm types and sizes (Stauffer, 2010). In addition, climate change is very difficult to predict precisely enough for long-term cost analysis, and the type of year-to-year predictions necessary to make those calculations are not presently feasible.

Additionally, the drip method is actually shown to increase crop yields by 22%, which itself is motivation for its implementation (Tagar et al., 2012,  p. 792). California almond farmers have seen their crop yields double as they increased their reliance on the micro irrigation system (Block, 2017). Drip irrigation creates better growing conditions by maintaining the correct moisture conditions favorable for crop growth (Batchelor et al., 1996).

However, if the initial investment cost is offset, micro irrigation will save money in the long run. This method of subsidizing the initial cost has been successful in other situations such as in the case of solar panels. An initial investment cost for switching to solar energy can be anywhere between $10,000 and $50,000 (Maehlum, 2014). It would be reduced by thousands of dollars because of the Federal and state tax credits associated with switching to solar power. Eventually, the solar panels will pay for themselves and even save you money in the long term, much like drip irrigation. Largely dependent on how big the house is, how much power is used, and where the house is located, the payback time for switching can vary, but for an average household with a high regular energy cost would be able to payback the initial investment in as little as 15 years (Maehlum, 2014).

A potential source of funding for this initial cost is the federal government. In a recent publication, the United States Department of Agriculture (USDA) showed that they are willing to fund such advancements in the agricultural industry in the name of invasive species, habitat management, soil erosion, and generalized conservation. Since all these factors contribute to the overall health and wellbeing of a farm, efficient watering is logically a top priority for the government.

These programs fall under The Conservation Reserve Program (CRP) which is a program offered by the USDA Farm Service Agency. The CRP is offered as part of an overall program to address invasive species research, technical assistance, and prevention and control that was set up by the USDA in 2015 (United States Department of Agriculture [USDA], 2015). The CRP specifically is a grant based program where the government is willing to supply money to farmers “for establishment of resource-conserving cover on environmentally sensitive croplands.” (USDA, 2015, p. 4). Among other programs, the Environmental Quality Incentive Program, which gives government aid to farmers who want to use more efficient and conservation friendly tools, and the Conservation Technical Assistance Program, which awards tools for conservation to private, tribal, and non federal lands, show a clear willingness for the government to aid in funding programs geared toward conservation and climate change problems (United States Department of Agriculture, 2015). The method under discussion to more efficiently water our farmland is expensive, but clearly the government is willing and able to encourage and fund conservation of farmlands in whatever way possible, even if that means switching to a more efficient water usage irrigation system.

Currently, despite its ability to conserve water, increase crop yields, and mitigate climate change impacts, the use of micro irrigation is not widespread. This is due in part to its high initial investment cost. With grants from the government to offset the initial costs, the system will eventually save money in the long term. A livelihood for farmers like Mike Wissemann, and food for the public like you, are only going to worsen as temperatures continue to rise. Water efficiency is important now more than ever before.

AUTHORS

Jeremy Brownholtz – Environmental Science

Molly Craft – Natural Resource Conservation

Noah Rak – Building and Construction Technology

Mary Lagunowich – Earth System

 

REFERENCES

Batchelor, C., Lovell, C., & Murata, M. (1996). Simple microirrigation techniques for improving irrigation efficiency on vegetable gardens. Agricultural Water Management,32(1), 37-48. doi:10.1016/s0378-3774(96)01257-7

Block, Ben. (2017). “Efficient” Irrigation Tool May Deplete More Water. Retrieved from http://www.worldwatch.org/node/5942.

Coumou, D., Robinson, A., & Rahmstorf, S. (2013). Global increase in record-breaking monthly-mean temperatures. Climatic Change,118(3-4), 771-782.

Dimick, D. (2014, August 21). If You Think the Water Crisis Can’t Get Worse, Wait Until the Aquifers Are Drained. Retrieved from https://news.nationalgeographic.com/news/2014/08/140819-groundwater-california-drought-aquifers-hidden-crisis/

Environmental Protection Agency [EPA]. (2016). Climate Change Indicators. Retrieved from https://www.epa.gov/climate-indicators/climate-change-indicators-drought

Hall, A. E. (2017). Heat Stress and its Impact. Retrieved from http://www.plantstress.com/Articles/heat_i/heat_i.htm

Hansen, L.D., Smith, B.N., & Criddle, R.S. (1998). Calorimetry of plant metabolism: A means to rapidly increase agricultural biomass production. Pure & Applied Chemistry, 70(3).

Honey Brake Lodge. (2017). Louisiana Delta Plantation: About. Retrieved from https://www.honeybrake.com/la-delta-plantation

Irmak, Suat. (2016) Impacts of extreme heat stress and increased soil temperature on plant growth and development. Retrieved from https://cropwatch.unl.edu/2016/impacts-extreme-heat-stress-and-increased-soil-temperature-plant-growth-and-development.

Joint Economic Committee Democratic Staff [JECDS]. (2012). The economic contribution of America’s farmers and the importance of agricultural exports. Washington, DC: U.S. Congress. Retrieved from https://www.jec.senate.gov/public/_cache/files/266a0bf3-5142-4545-b806-ef9fd78b9c2f/jec-agriculture-report.pdf.

Kaufman, Jill. (2016, August 16). Northeast Farmers Grapple with the Worst Drought in Over A Decade. Retrieved from https://www.npr.org/sections/thesalt/2016/08/30/491942025/northeast-farmers-grapple-with-worst-drought-in-more-than-a-decade.

Kromm, David. (2017). Water Encyclopedia: Science & Issue. Retrieved from http://www.waterencyclopedia.com/Oc-Po/Ogallala-Aquifer.html

Lee Engineering. (2017, July 31). 6 Reasons Why Drip Irrigation Pays For Itself. Retrieved from http://lee-engineering.com/irrigation/6-reasons-drip-irrigation-pays/

Lamont, W. J., Orzolek, M. D., Harper, J. K., Kime, L. F., & Jarrett, A. R. (2017, November 2). Drip Irrigation for Vegetable Production. Retrieved from https://extension.psu.edu/drip-irrigation-for-vegetable-production

Maehlum, M. A. (2014, July 18). How Long to Pay Off my Solar Panels? Retrieved from http://energyinformative.org/long-pay-solar-panels/

Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L.-S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5(86). http://doi.org/10.3389/fpls.2014.00086

Perlman, U. H. (2016, December 9). Irrigation Water Use: Surface irrigation. Retrieved from https://water.usgs.gov/edu/irfurrow.html

Schwarzenbach, V. (2017). Our Story. Retrieved from http://www.warnerfarm.com/our-story/

Shea, Andrea. (2016, August 6). Severe Drought Hits Majority of Massachusetts. Retrieved from https://www.npr.org/2016/08/06/488969852/severe-drought-hits-majority-of-massachussetts.

Simonne E., Hochmuth R., Breman J., Lamont W., Treadwell D., & Gazula A. (2015, October 29). Drip-irrigation Systems for Small Conventional Vegetable Farms and Organic Vegetable Farms. Retrieved from http://edis.ifas.ufl.edu/hs388

Stauffer, B. (2010). Drip Irrigation. Retrieved from https://www.sswm.info/category/implementation-tools/water-use/hardware/optimisation-water-use-agriculture/drip-irrigation

Tagar, A., Chandio, A., Mari, I.A., & Wagan, B. (2012). Comparative study of drip and furrow irrigation methods at farmer’s field in umarkot. World Academy of Science, Engineering and Technology 69, 788-792. Retreived from https://www.researchgate.net/profile/Farman_Ali_Chandio/publication/259346633_Comparative_Study_of_Drip_and_Furrow_Irrigation_Methods_at_Farmer’s_Field_in_Umarkot/links/00b4952b261f3be0ac000000.pdf

Thomson, A.M., Rosenberg, N.J., Izaurralde, R.C., Brown, R.A., & Benson, V., (2012). Climate change impacts on the conterminous USA: An integrated assessment. Part 3. Dryland production of grain and forage crops. Climatic Change, 69(1), 43-65. doi:10.1007/s10584-005-3612-9

United States Department of Agriculture [USDA]. (2015). U.S. Department of Agriculture (USDA) Grant and Partnership Programs that can Address Invasive Species Research, Technical Assistance, Prevention and Control. Washington DC. Retrieved from https://www.doi.gov/sites/doi.gov/files/uploads/USDA%20Grants%20Workbook%20FY%202016%20FINAL%2016%20Oct%202015.pdf

Vaughan, M,. Huffaker, A., Schmelz, E., Dafoe, N., Christensen, S., McAuslane, H., Alborn, H., Allen, L.H., Teal, P.E.A. (2016) Interactive effects of elevated [CO2] and drought on the maize phytochemical defense response against mycotoxigenic Fusarium verticillioides. PloS One. 11(7). doi: 10.1371/journal.pone.0159270

Wichelns D, Houston L, Cone D, Zhu Q, Wilen J. 1996. Farmers describe irrigation costs, benefits: Labor costs may offset water savings of sprinkler systems. Calif Agr 50(1):11-18. https://doi.org/10.3733/ca.v050n01p11.

Yonts, C., Eisenhauer, E., & Varner, D. (2007, June). Managing Furrow Irrigation Systems. Retrieved from http://extensionpublications.unl.edu/assets/html/g1338/build/g1338.htm#target