Promotion of Electric Cars to save Marine Mammals

Katherine Guay: Natural Resource Conservation, Patricia Ledesma: Animal Science, Akeem Smith: Building Construction and Technology

As the United States have developed and technology has grown, our planet has become caught in the crossfire, making it necessary to take it upon ourselves to protect different species from extinction. Programs funded by the federal government have sprung up in the hopes of mitigating these losses. The Marine Mammal Act cost each American taxpayers a penny to fund 3.4 million dollars in 2017 (Safina, 2018) and through this act, they have prevented the death of millions of marine mammals from oil drilling, mining, seismic blasting and fishing bycatch (Safina, 2018). Most of these problems have a straightforward and direct negative impact on marine life. However, many people are unaware of the damage that seismic surveys have on marine life. Continue Reading

Massachusetts’ Green Wave

A jar of weed grown in a commercial facility.

The mayor Holyoke, a small city in Western Massachusetts, is hoping he has found the golden ticket that will save the area’s economy, and it comes in the form of legalized pot. Effective December 15, 2016 Massachusetts became the first East Coast state that will allow the sale of recreational marijuana and many cities are hoping the new industry will jobs and money to poorer areas (Massachusetts Legislation, 201). When recreational marijuana was first made available in Colorado there was a large spike in commercial cultivation facilities to keep up with the demand. The first week that marijuana was legal in Colorado stores sold over $14 million worth of recreational marijuana and this number continues to grow as more user adopt the practice (KansasCityFed). By the end of 2016 Colorado had given out nearly 500 permits to sell recreational marijuana and 700 permits to grow it, resulting in $1.3 billion dollars worth of marijuana being sold (KansasCityFed). All of the marijuana sold in Massachusetts needs to be grown in Massachusetts which has resulted in 172 recreational cultivation license applications being submitted to Massachusetts’ cannabis control board from all across the state, showing that Mass is on track to follow Colorado’s cannabis boom (CCC).

These facilities are almost exclusively indoor cultivation facilities that are housed in warehouses or greenhouses. Indoor grow facilities are utilized because of their ability to deliver a high yield of crops year round while protecting plants from any adverse environmental conditions and keeping the grow area within precise environmental conditions (Baptista et al., 2017). Indoor grow facilities produce as much as ten times more crops compared to traditional farms, making them an obvious choice for growing expensive crops like marijuana (Barbosa et al., 2015). In Massachusetts indoor grow facilities are used almost exclusively for large operations because of the long winters and short growing season that would drastically impact the growers overall yield. Consumers also demand a very high quality product when they purchase marijuana from a store and these products can only be grown in intensly regulated facilities. Without the use of indoor grow operations marijuana cultivators would not be able to produce enough high quality product to yield a reasonable profit.  The major problem with controlled environment agricultural is the reliance on outside energy sources and the effect this energy consumption can have on the environment (Sanjuan-Delmás et al., 2017).

However, greenhouses use significantly more energy than more traditional open air farms. The amount of energy utilized fluctuates based on the individual greenhouse because of differences seen in technology and construction, but it is inevitable that greenhouses will use more energy than traditional open air farms due to the equipment needed to produce a high yield of crops. A recent study found that greenhouses use as much as 160.5 MJ/kg while more traditional outdoor growing options like open air farming only uses 0.8-6.9 MJ/kg (Ntinas et al., 2016). Marijuana cultivation is considered to be one of the most energy intensive industries in America today (Warren 2016). In the United States 1% of the entire country’s energy use is spent on marijuana cultivation  (Magagninia 2018). This can rise to 3% in cannabis rich states like California (Magagninia 2018). Most industrial grow facilities have large, overhead lights that replace the sun, bring water straight to the plants in the absence of rain, maintain precise air quality through the use of air filters and dehumidifiers. (NCLS). Each of these necessary tools needs a large amount of energy to function at peak performance.

To grow a high quality product facilities must employ very specialized lighting units that provide a specific wavelength of light to optimize production. Different lighting systems can produce very different effects on the plants that can change the height of the plant, the amount of product produced, and the amount of THC and CBD found in the marijuana (Magagninia 2018). Lighting can account for 76-86% of the entire facility’s energy usage, which toals 2283 kW/hr per kilogram of marijuana produced (Arnold 2013). Unfortunately, cutting back on lighting isn’t an option either. Because of marijuana’s intense cultivation needs any compromise in lighting quality can gravely impact the amount of product yielded and the quality of the product.

Another large consumer of energy within an indoor grow facility is the transportation of water to the facility and the method utilized to water the plants.  Most facilities utilize hydroponic systems because of their ability to maximize crop yield while minimizing the amount of water being used (Barbosa 2015). However, the addition of hydroponic systems can increase the amount of energy needed to effectively operate an individual greenhouse (Cannabis Control Commision). Extra water handling uses approximately 173 kW/h for every kg of cannabis yielded (Mills, 2012).

Large marijuana facilities are forced to use ventilation systems like air scrubbers or charcoal filters in their facility to help mitigate noxious gases or any other fumes associated with cultivation (Marijuana Facility Guidance 2016). These machines help remove any impurities from the air while maintaining safe working conditions for workers who will be subjected to the fumes all day. When studied these machines consumed 1848 kW/h for every kg of cannabis yielded (Mills, 2012). Despite their large energy draw, ventilation systems are imperative for maintaining a safe work environment while insuring the cultivation plants are not dumping a large amount of noxious fumes into the surrounding area.

Marijuana is a very climate dependant plant that requires specific temperatures to grow as productive as possible. Most facilities are need to use air conditioners for a large part of the year because of the immense amount of heat being produced by the equipment being used, however, in Massachusetts facilities would also need to provide heat in the winter. Without air conditioning the plants would overheat which can impact the amount of product yielded and they could even be at risk of dying. Massachusetts’ winters are so cold that it would necessitate additional heat sources be provided or the plants could again face decreased yields or death. It was shown that the average facility uses 1284  kW/h for every kg of cannabis yielded on air conditioning and 304 kW/h for every kg of cannabis yielded on heating (Mills, 2012).

When a system is continuously using large amount of energy the waste product of these systems needs to be considered.  The introduction of greenhouse gases into the atmosphere is a leading cause of climate change that has been proven to warm the earth, resulting in melting glaciers, rising sea levels, warmer oceans, and more natural disasters (NASA). Indoor agriculture’s high energy needs often results in a high amount of carbon dioxide being produced as waste  (Sanjuan-Delmás et al., 2017). A 70 m2 greenhouse heated solely by natural gas produced 2.9 kg CO2 eq./kg more than one of the same size that was heated by natural gas supplemented by solar power (Hassanien et al., 2017). Most marijuana grow operations do not follow organic production standards which have a 35%-45% lower carbon footprint than organic farming (Bos et al., 2014). This carbon being pumped into the environment can negatively impact the Earth by promoting climate change. Thankfully, there are renewable sources of energy that can be harnessed that have a much smaller carbon footprint while still providing a quality source of energy.  

Large Legal Marijuana Farm Professional Commercial Grade Greenhouse Filled With Mature Budding Cannabis Indica Plants

Massachusetts has been slowly working towards more eco friendly energy solutions like energy that comes from solar panels, nuclear reactors, and natural gas. In 2017 68% of Massachusetts’ energy was produced by natural gas and only 4% of its energy from coal (eia). Solar panels are also gaining popularity and 1,867 megawatts of solar power was installed in Massachusetts in 2017 (eia) . Carbon emissions were also decreased by 19 percent from 1990 t0 2015 (Mass.gov). However, 27% of Massachusetts heating needs still come from oil (eia). Such a large and energy intensive industry that requires a large amount of heat could jeopardize Massachusetts goals to reduce carbon emissions and increase clean energy usage. One popular solution is the use of photovoltaic cells, also known as solar panels.  

 The use of technologically advanced solar panels would help offset the shortcomings of greenhouse growing maintaining a high agricultural yield without contributing to global warming by releasing greenhouse gases. When solar panels are placed on an area that covers  20% of the roof of a greenhouse it can replace 20% of the energy necessary to power the grow site (Hassanien et al., 2017). In Massachusetts standard solar panels are able to produce approximately 1130 kWh of energy per year (Solar-Estimate). A large marijuana cultivation facility can use an upward of 210,000 kWh of energy per year, which would require approximately 185 panels to completely run the facility off of energy generated by panels (CPR.org). Energy use is directly linked to size and not all facilities are as large and energy dependant; they can be as small as a few hundred square feet or as large as 100,000 square feet (Cannabis Control Commision).  Not only can greenhouse energy production be supplemented with renewables, but renewables could possibly meet all of a greenhouse’s energy demand. Previous marijuana grow sites have been able operate while only utilizing energy from solar arrays, making it likely that greenhouses in Massachusetts could do the same (Barok 2017).

By adding solar panels to grow sites the amount of fossil fuels  used will drop dramatically which will also combat the amount of carbon dioxide being produced which will ultimately help slow the rate of climate change. When compared to greenhouses that relied on fossil fuels alone to produce their electricity demand, ones that supplemented production with solar panels had a 29% lower carbon footprint (Ntinas et al., 2016). The potential for greenhouses to run largely off of solar energy while still producing a high yield of crops will result in a large cut to each facilities carbon footprint. The 240 solar panels they installed generated 440,000 kWh of energy in five years, which would have cost $88,000 and was more than enough to power the facility throughout the year (Barok 2017). A solar array of this size would make almost two times the amount of energy needed for an average facility that only consumes roughly 210,000 kWh of energy per year (CPR.org). Just one building was able to save 550,000 pounds of carbon dioxide from being released into the atmosphere (Barok 2017).

Often times when considering the amount of energy used by indoor grow facilities it is tempting to offer solutions that involve less intensive cultivation practices that often use less energy. By using open air farming practices a cultivation site could use close to 23 times less energy than indoor growing facilities (Ntinas et al., 2016). The problem with less intensive production practices is that they often produce a lower yield of poorer quality cannabis. Growing outdoors leaves plants vulnerable to volatile weather, mold, and pests (Leafly). Massachusetts winters would also drastically limit the grow season for cultivators to just a few months a year, while indoor facilities could continue to produce products all year (Leafly). These drawbacks are not worth the potential energy savings.

Solar panels are the best option for cannabis cultivators that are looking to reduce their carbon footprint through the use of low emission energy, but putting these practises to use might not come naturally to companies that are usually focus solely on profit. The availability of solar panels in America is at an all time high with energy subsidies projected to reach between $43 and $320 per megawatt hour for solar panel produced energy coming from tax credits that cover between 30% and 60% of wholesale prices (Maloney, 2018). Subsidies provided for solar energy bring the costs of energy provided by solar panels down drastically and continue to do so (Maloney, 2018). To further incentivise solar usage Massachusetts towns and cities should give preference to indoor cultivation facilities that utilize solar panels as their main source of energy. Towns have a high level of control when granting permits to businesses that are trying to grow marijuana within town borders (CCC). If towns made it known that they gave preference to facilities that utilize solar energy then incoming businesses would be more likely to implement solar technology as a way to get gain an advantage over their competition. This would also empower those looking to get a license to include as much renewable energy as possible as a way to maximize the chance that they would be granted a permit.

Fossil fuels are not a clean source of energy and while reduction in use of electricity can help to lessen pollution, to effectively reduce greenhouse gas emissions more eco friendly energy sources need to be utilized. In an effort to reduce fossil fuel consumption, scientists have developed a multitude of systems that are able to produce large amounts of energy without releasing harmful gases into the atmosphere. One of the most common ways to harvest renewable energy is through the use of photovoltaic cells, more commonly known as solar panels. Because of the ease of production, limited drawbacks, and technological advancements surrounding solar panels it is widely thought that they will be the most abundant source of energy in the future (Schmalensee et al., 2015).

One way to encourage greenhouses to make the switch from fossil fuel powered grid energy to roof- or ground-mounted solar panels is for the government to provide subsidies to facilities that use solar panels to provide the majority of their energy demand. If subsidies are provided, more facilities will start using clean energy, bringing the industry’s carbon footprint down (Maloney, 2018; Sanjuan-Delmás et al., 2017). In China, a different subsidy was proposed to provide greenhouses with between $62 and $140 per megawatt hour of electricity produced with solar panels (Wang et al., 2017). Although there is currently no such policy in China, solar powered greenhouses will help lead sustainable development and reduce carbon emissions (Wang et al., 2017). It is clear that if subsidies for using solar panels for energy production are offered, it will attract more users and bring the costs down while at the same time provide clean energy not produced by fossil fuels.

These results could be replicated across Massachusetts as a way decrease the amount of carbon dioxide produced across the state.  

When considering ways to reduce our carbon footprint most Americans do not consider the role that agriculture plays in climate change. 60% of Americans believe that climate change is an ongoing issue but they tend to focus on emissions produced by cars, planes, and factories, rather than agricultural industries (Borick 2018). However, according to the Washington Post, “the nation’s booming marijuana sector is struggling to go green”. They state that analysts and state regulators say the cannabis industry, including states that have legalized recreational pot and those that offer it only for medicinal purposes,  is outpacing many other areas of the economy in energy use, racking up massive electricity bills as more Americans light up. The county’s Marijuana Energy Impact Offset Fund, which tacks on a 2.16-cent surcharge for each kilowatt-hour of electricity used by grow facilities, is something of a model for other states, cities and counties that also recognize the growing energy drain that has resulted from the rapid expansion of legal cannabis (Wolfgang, B., 2018). By introducing legislation now that rewards the use of solar energy Massachusetts can incentivise new businesses to build more sustainable greenhouses from the onset. These eco-friendly greenhouses will reduce the amount of fossil fuels used and could drastically cut their carbon footprint (Ntinas et al., 2016).

The one major hurdle for most growers is the initial cost of adding solar panels being prohibitive. They simply cannot afford the start up costs associated with adding solar panels to a facility and don’t believe that they can be a money saving investment in the long run. However, in one study done by Petru Maior University, they found solar panels payed for themselves in 6 years. After considering the initial costs of the system, yearly operating costs, taxes, and income a facility studied by Petru Maior University found that the initial investment was paid back after six years after saving money on their electricity bill and selling excess energy back to the electricity companies ( hydroponic greenhouse energy supply based on renewable energy). Solar panels also reduce cost because the energy is generated at the site where it is needed and there are no costs associated with transporting the power to where it needs to be (Borenstein 2008). Even when you consider the cost of yearly maintenance of solar panels, the amount of money saved with a reduction of the facility’s energy bill far outweighed the money needed to be paid (LG Energy). These savings jump quickly when you consider the high cost of electricity in Massachusetts where residents pay roughly 14.8 cents per kWh, the the ninth highest in the state (NPR :) ).

Greenhouse agriculture, including marijuana grow houses, is a quickly growing industry that requires high amounts of energy that is currently supplied primarily by fossil fuels which produce large amounts greenhouse gases when burned (Shen et al., 2018; Sanjuan-Delmás et al., 2017). A shift can be made in the industry from fossil fuels to clean energy if subsidies are provided to greenhouses that use solar panels to supply their energy demand. Subsidies will incentivize greenhouse operators to use solar panels and will help make them more affordable to operators who may have not been able to afford solar panels otherwise. Subsidies will result in a reduction in the cost of solar panels over time as more facilities start to use them (Maloney, 2018). A reduction in the reliance on fossil fuels to lower our carbon footprint is essential if climate change is to be mitigated. Solar panels are a great source of renewable energy that are becoming increasingly popular and if utilized by energy-hungry greenhouses can greatly reduce their carbon footprint.

By adding solar panels to grow sites the amount of fossil fuels  used will drop dramatically which will also combat the amount of carbon dioxide being produced which will ultimately help slow the rate of climate change.

A greenhouse growing marijuana intended for legal sales.

 

Works Cited

Baptista FJ, Guimares AC, Meneses JF, Silva AT, Navas LM. Greenhouse energy

consumption for tomato production in the iberian peninsula countries [electronic resource]. Acta horticulturae. 2012(9521):409-416. http://silk.library.umass.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=agr&AN=IND44639795&site=ehost-live&scope=site http://www.actahort.org/. doi: //www.actahort.org/.

Baptista FJ, Murcho D, Silva LL, et al. Assessment of energy consumption in organic tomato greenhouse production – a case study. Acta horticulturae. 2017(1164):453-460. http://silk.library.umass.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=agr&AN=IND605853021&site=ehost-live&scope=site http://dx.doi.org/10.17660/ActaHortic.2017.1164.59. doi: //dx.doi.org/10.17660/ActaHortic.2017.1164.59.

Barbosa, L. G., Gadelha, D. F., Kublik, N., Proctor, A., Reichelm, L., Weissinger, E., . . . Halden, U. R. (2015). Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods doi:10.3390/ijerph120606879

Barok, J. (2017). Is it time to consider solar power. Cannabis Business Times. Retrieved from https://www.cannabisbusinesstimes.com/article/is-it-time-to-consider-solar-power/

Borenstein, B. (2008).The market value and cost of solar photovoltaic electricity production. University of California Energy Institute. Retrieved from escholarship.org/uc/item/3ws6r3j4

Borick, C., Rabe, B., Fitzpatrick, N., & Mills, S. (2018). Issues in energy and environmental policy. University of Michigan. Retrieved from http://closup.umich.edu/files/ieep-nsee-2018-spring-climate-belief.pdf

Felix, A. (2018). The economic effects of the marijuana industry in Colorado. Main Street Views.  Retrieved from www.kansascityfed.org/publications/research/rme/articles/2018/rme-1q-2018

Hartig, H., & Geiger, A. (2018). About six-in-ten americans support marijuana legalization. Retrieved from http://www.pewresearch.org/fact-tank/2018/10/08/americans-support-marijuana-legalization

Hassanien, R. H. E., & Ming, L. (2017). Influences of greenhouse-integrated semi-transparent photovoltaics on microclimate and lettuce growth. International Journal of Agricultural & Biological Engineering, 10(6), 11-22. doi:10.25165/j.ijabe.20171006.3407

Holyoke, Massachusetts, is ready to welcome the marijuana industry with open arms. (2018). NBC News. Retrieved from https://www.cbsnews.com/news/holyoke-massachusetts-is-ready-to-welcome-the-marijuana-industry-with-open-arms/

Magagninia, G., Grassia, G., & Kotirantab, S. (2018). The effect of light spectrum on the morphology and cannabinoid content of cannabis sativa L. Med Cannabis Cannabinoids. 1:19–27. DOI: 10.1159/000489030

Maloney, B. (2018, March 23). Renewable Energy Subsidies — Yes Or No? Retrieved from https://www.forbes.com/sites/uhenergy/2018/03/23/renewable-energy-subsidies-yes-or-no/#7afc6c206e23

Marijuana Facility Guidance. (2016). Colorado Fire Marshals Special Task Group. Retrieved from https://fmac-co.wildapricot.org/resources/Pictures/Marijuana_Guidance_Document_v.1_2016%2003%2016.pdf

Massachusetts Legislature. (2016). Section 76: Cannabis control commission; members; appointment; terms; chairman; secretary. Retrieved from https://malegislature.gov/Laws/GeneralLaws/PartI/TitleII/Chapter10/Section76

Mills, E. (2012). The carbon footprint of indoor Cannabis production. Elsevier. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.396.4759&rep=rep1&type=pdf

NASA. (n. d.) How climate is changing. NASA Science. Retrieved from https://climate.nasa.gov/effects/

Ntinas, G. K., Neumair, M., Tsadilas, C. D., & Meyer, J. (2017). Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under southern and central european climatic conditions. Journal of Cleaner Production, 142, 3617-3626. doi:10.1016/j.jclepro.2016.10.106

Ronay, K., & Dumitru, C. (2015). Hydroponic greenhouse energy supply based on renewable energy sources doi://doi.org/10.1016/j.protcy.2015.02.099

Schmalensee, R., Bulovic, V., Armstrong, R., Batlle, C., Brown, P., Deutch, J., . . . Vergara, C. (2015). The future of solar energy an interdisciplinary MIT study. Massachusetts Institute of Technology. Retrieved from http://energy.mit.edu/wp-content/uploads/2015/05/MITEI-The-Future-of-Solar-Energy.pdf

Shen, Y., Wei, R., & Xu, L. (2018). Energy consumption prediction of a greenhouse and optimization of daily average temperature. Energies, 11(1), 65. doi:10.3390/en11010065

Warren, G. (2016). Regulating pot to save the polar bear: energy and climate impacts of the marijuana industry. Columbia J Environ Law 2015;40:385. Retrieved from http://www.columbiaenvironmentallaw.org/regulating-pot-to-save-the-polar-bear-energy-and-climate-impacts-of-the-marijuana-industry/

Wolfgang, B. (2018, January 7). Environmentalists alarmed at marijuana industry’s massive use of carbon-based electricity. Retrieved from washingtontimes.com

Where greenhouse gases come from. (n.d.) Ames Laboratory. Retrieved from https://www.ameslab.gov/esha/where-greenhouse-gases-come

(2015, January 1). Environment and Energy Facts and Figures. Retrieved from https://www.environment.admin.cam.ac.uk/facts-figures

Hydroelectric Power in The Snake River

 

Samantha Bruha: Animal Science

Shane Murphy: Horticulture

Jake Schick: Building Construction Technology

Ashley Artwork: Building Construction Technology

The Nez Perce people reside on the Snake River in North Central Idaho and still practice a hunter-gatherer way of life (Smith, 2018).  In 1855, The United States Government and five Native American tribes residing in Washington, Oregon, and Idaho signed the Treaty of Walla Walla (Smith, 2018)  Since the the original treaty, the Nez Perce Tribe has retained the right to fish, to hunt, and to graze livestock on unclaimed lands outside of the reservation (Smith, 2018).  Due to the addition of hydroelectric dams, beginning in the 1950’s on the Columbia and Snake Rivers, the Nez Perce Tribe has suffered a great loss of fishing resources from the effects of dams on the Salmon populations (Quirke, 2017).  Elliott Moffett, a 65 year old member of the Nez Perce Tribe, fights for Salmon in the lower Snake River (Quirke, 2017). “‘I like to say we are like the Salmon, we need clean, cold, swift running water. And they don’t have that because the dams have impounded their river,’” Moffett states (Quirke, 2017).  Moffett and his fellow activists at the Nimiipuu Protecting the Environment organization, have dedicated their lives to defending the environment and the Nez Perce rights (Support|Nimiipuu Protecting the Environment, 2018).  Every decision the tribe makes has “seven generations ahead” in mind and the scarcity of resources is making it harder and harder to teach future generations how to live off of the land (Support|Nimiipuu Protecting the Environment, 2018).

  Continue Reading

Rooftop Solar in The Sunshine State

 

James Locurto-  Geology

Nicholas Pomella- Building Construction Technologies

KathrynPreston- Animal Science

Sierra Humiston- Natural Resource and Fisheries

Around the world today, many people are living in undeveloped communities and are left without the gift of electricity. This lack of electricity is seen especially within the rural areas of  Sub-saharan Africa and South Asia, where around 89% of the communities are living

 without any form of electricity. However, this lack of electricity in impoverished areas can be alleviated by an invention that has been utilized for many years, this invention being solar power. Specifically, in the year of 2007, 2.5 million homes located in undeveloped areas gained the gift of electricity through the development of solar power systems on their homes (Grimshaw & Lewis, 2010). The use of solar power has the incredible potential to save these communities from underdevelopment and can propel them into living a life that everyone deserves. Communities without access to electricity are reaching for a cleaner future through the installment of solar panels on rooftops while the wealthy continue to burn fossil fuels, which is overall the cheaper and more environmentally harmful option.

Burning fossil fuels is a primary driver of the greenhouse gas effect and global climate change. Over the past few decades, levels of carbon dioxide and other greenhouse gases in the atmosphere have risen dramatically. This rise is attributed to three major sectors in the United States, the most prevalent being the electric power sector ma

king up 33% of greenhouse gas emissions (Solar Energy Industries Association, 2018). The production of electricity is pivotal in the functioning of the United States economy, with the industry valued at $250 billion with a demand function projected to increase in coming years (Morgan et al. 2016). Carbon dioxide and greenhouse gas emission levels, currently produced by the United States by way of traditional carbon emitting methods of energy production, such as coal, are not sustainable (Morgan et al. 2016). It is imperative that actions be taken to reduce these harmful emissions. Continue Reading

Green Weed, Green Planet

Tyler Clements (Environmental Science), Rudy Marek (Geology), Mitch Maslanka (Natural Resource Conservation), Olivia Santamaria (Horticulture)

In 1996, California voted to become the first state to legalize marijuana for medical use. Fast forward to today, and the legalization of marijuana is now a seemingly unstoppable movement that is sweeping across the United States. With recreational and medicinal use being rapidly legalized all over the country, 29 states have already legalized marijuana medicinally and 9 have recreationally (Robinson, Berk, & Gould, 2018, para. 2). From the start of California legalizing marijuana, this new industry with seemingly endless potential was given the green light to begin at the commercial level. As of 2017, the industry has grown from $6.73 billion to $9.7 billion in North America (Borchardt, 2017, para. 1; Robinson, 2018, para. 6; Zhang, 2017, para. 2). The entrepreneurs of the country began to think of ways to create and expand a marijuana based business and one of the most important aspects of this process was how the marijuana itself was going to be grown. Continue Reading

Shifting Subsidies From Corn Ethanol to Solar

Evan Chakrin: Horticulture

Ryan White: Animal science

Tim Miragliuolo: Building and Construction Tech.

 

 

A sun tracking solar panel in a corn field. (http://www.shutterstock.com)

 

 

Nobody likes wasteful government spending on programs that don’t benefit consumers or the environment, but that is exactly what’s happened with decades of corn ethanol subsidies. The American taxpayer is forced to underwrite the production of an inefficient energy source, and forced again to buy its product when used in gasoline mixtures at fuel stations across the country. Gasoline-ethanol mixes cost consumers miles per gallon and clog the fuel systems of seasonal use equipment and recreational vehicles (Regalbuto, 2009; Patzek et al., 2005) and do little to help the environment (Vedenov & Wetzstein, 2008). After having cost US taxpayers over 40 billion dollars from 1978-2012 (Melchior, 2016), federal tax code supports over 26 billion in subsidies for corn ethanol through 2024 (“Federal subsidies”, 2015). It is time to shift federal incentives toward truly renewable energy systems, and solar photovoltaic [PV] technology provides an excellent answer to our future energy needs. Due to the relative land usage, flexibility of installation, and greenhouse gas emission efficiency of PV systems, we believe that all future corn ethanol tax incentives should be redirected toward the installation of photovoltaic solar panel systems either in isolated systems or through collocation with viable biofuels and vegetable crops. Continue Reading

Replace Hydropower Dams to Save the Southern Resident Orca Whale Population!

 

On August 8th 1970, the southern resident orca whale population was ambushed off the coast of Penn Cove, Washington in one of the most infamous whale captures in history (WDC, 2017). This capture involved 80 whales, in which 7 were collected and 5 were killed (WDC, 2017).  The only current living orca from this incident is Lolita (WDC, 2017). She is now the oldest living killer whale in captivity and lives in what is arguably too small of a tank (Save Lolita, n.d; Herrera, 2017). It’s believed that Lolita’s tank doesn’t meet the minimum 48 feet horizontal dimension requirement set by the United States Department of Agriculture (USDA) (Herrera, 2017). Lolita has a 60 foot tank obstructed by a ‘work island’ that separates her pool into two 35 feet sections (Herrera, 2017). Another issue Lolita faces in captivity is solitude (which is abnormal for social animals such as orcas) (Save Lolita, n.d). Due to animal rights advocacy groups making these issues well known to the public, Lolita has become both a symbolic example for why orcas can’t feasibly be kept in captivity and a famous icon for the southern resident orca population. This killer whale population is currently estimated at 80 whales consisting of 3 pods named the J,K and L pods (NOAA Fisheries, 2015). In the fall, spring and summer their territory ranges from waterways near the U.S.-Canadian border to inland waterways in Washington state ( NOAA Fisheries, 2015).

The southern resident orca whale population is also vital for Washington state’s economy. These whales benefit the state’s economy by providing tourism revenue through whale watching (Grace, 2015). The number of people going on whale watches in Washington has even increased over time; from 1998 to 2008, Washington state saw an increase of 108,000 whale watchers and a 3% average annual growth rate (O’Connor, 2009). Due to this increased whale watching tourism, wildlife watching activities (such as whale watching) created over 21,000 jobs in Washington State, yielded $426.9 million in job income, and generated $56.9 million in state tax revenue all in 2001 (Grace, 2015, para. 4). People are also estimated to spend nearly $1 billion annually in Washington viewing wildlife (O’Malley, 2005, para. 1). It’s also estimated that the southern resident orca population itself adds minimally 65-70 million dollars to Washington state’s economy (Grace, 2015, para. 1).

Sadly though, despite all the intrinsic and economic benefits these orcas bring to Washington state, they are facing the threat of extinction. In fact, the southern resident orca population was even added to the endangered species list in 2005 (NOAA fisheries, 2015).They were added to this protection list because the population has fallen from an estimated 200 whales in the late 1800s to a current estimate of 80 whales (NOAA Fisheries, 2015). This population decline even lead to the production of a recovery plan by the National Marine Fisheries Services (National Marine Fisheries Service, 2008). This plan addresses specific potential threats to the southern resident orca population such as prey availability, pollution, vessel effects, oil spills, exetera and outlines goals to minimize these threats and their harm to orcas (National Marine Fisheries Service, 2008). One of the believed reasons behind the orcas small population size is a limited abundance of salmon from the Snake and Columbia rivers (Baker & Peterson, 2017). The southern resident orcas rely on Columbia and Snake river salmon as a food source during the summer when they live in waters off the San Juan Islands that lie northwest of Seattle (Baker & Peterson, 2017). Salmon are an essential food source for these whales because resident killer whales only prey on fish, not other marine mammals (such as seals or sea lions) (Ford et al., 1998, 2009). The Columbia River itself is also especially crucial for southern resident orcas as they display unique feeding behavior there not seen at any other territorial location; they stock up on salmon by sitting at the mouth of the river for days and foraging (Baker & Peterson, 2017). It’s also believed the declining salmon population is a key reason behind the southern resident orcas low population because orcas are predators at the top of their ecosystem’s food chains and don’t serve as prey for other animals (Ford, 2009). Therefore, predation of orcas cannot be considered a valid source for their population decline. As a result, the decreasing salmon population in the Columbia and Snake Rivers has added pressure to the orca population over the past three decades (Baker & Peterson, 2017). The Center for Whale Research and the Center for Conservation Biology (University of Washington) found that low salmon populations also lead to enough nutritional stress to cause two-thirds of  southern resident orca pregnancies to fail between 2007 and 2014 (Baker & Peterson, 2017).The majority of the salmon this whale population consumes also originates from the Snake river, a tributary of the Columbia River (Barker & Peterson, 2017). In short, the southern resident orca population is critically endangered and low salmon populations are putting even more stress on the whales (Barker & Peterson, 2017; Ford 2009). If the northwest salmon population is not restored, it could result in the disappearance of resident orcas in the northwest forever.   

Since 1991, twelve specific populations of Columbia River Basin salmon and steelhead have been protected under the Endangered Species Act (Harrison, 2016). For Snake River Salmon the National Marine Fisheries Service noted that the estimated annual returns of spring/summer Chinook declined from 125,000 fish between 1950 and 1960 to just 12,000 fish in 1979 (Harrison, 2016). Proposed recovery plans have also started legal battles over what actions are necessary to avoid further jeopardizing the species (Harrison, 2016). This debate is complicated by hydropower dams directly affecting salmon and steelheads (Harrison, 2016). These hydropower dams on the Columbia and Snake rivers are inhibiting growth of the river’s salmon population by creating habitat fragmentation, causing direct mortality and decreasing their food supply (Harrison, 2008).

At 1,954 kilometers long, the Columbia river is the 15th longest river in North America; its tributaries and it form the dominant water system in the Pacific Northwest as it drains into seven different western states (Bonneville Power administration , 2001). The history of the dams on the Columbia and Snake rivers date back to Theodore Roosevelt’s presidency, as the construction of the first dam on the Columbia river (the Rock Island dam) began shortly after his election with the sole intention of producing electricity (Harrison, 2008) . By 1975 the Columbia river had four more large dams constructed on it and has had smaller dams constructed on it since (Harrison, 2008).  

These dams inhibit the river’s salmon population because they fragment rivers and therefore impede salmon migration. This negatively impacts the reproduction of the Columbia and Snake river salmon because they then cannot spawn effectively upstream. Salmon need to navigate between spawning sites, rearing habitat (juvenile living space) and the Pacific Ocean in order to reproduce. Salmon hatch in rivers and then travel to the ocean for their adult lives  (National Park Service’s, 2017). Then when they are ready to spawn again, instincts guide them back to their birthplace to spawn (National Park Service’s, 2017). There are also case studies to show that dams, like the ones present in the Snake and Columbia river, prevent the salmon from properly spawning upstream. For example, the presence of the Hemlock Dam on Trout Creek, Washington, USA was linked to the impeded migration of  U.S. threatened Lower Columbia River steelhead (a type of salmon) and other migratory fish by blocking their migration path (Claeson & Coffin, 2016, p. 1144). It is also known that the dams in the Columbia river basin now block more than 55 percent of the spawning and rearing habitat once available to salmon and steelhead (Harrison, 2008).

Dams not only block the upstream passage of adult fish but block the downstream passage of juvenile fish as well. Hydroelectric dams (such as the ones on the Columbia and Snake rivers) compound this problem because they force migrating fish to travel through turbines without a bypass systems (Harrison, 2008). This is a problem for migrating salmon because the spinning blades and/or concrete walls in these turbines could kill or injure juvenile fish drawn in by the current (Harrison, 2008). Biologists estimate that fish drawn through a turbine passage has a 10 to 15 percent chance of dying (Harrison, 2008). This is problematic due to the Snake and Columbia river having multiple hydroelectric dams that increase each fish’s chance of dying by forcing them to travel through turbines to migrate (Harrison, 2008).

The dam’s on the Columbia and Snake rivers are also negatively impacting the salmon populations chance of survival by limiting their sources of food. The hydroelectric dams are doing this by limiting the growth of benthic insects (mayflies,stoneflies, caddisfly nymphs) populations within the rivers. Dams are known to limit benthic insect population growth by increasing water temperatures (Claeson & Coffin, 2016).  Dams increase water temperatures by creating reservoirs that isolate water and create a slow flow over the dam that increases the reservoir’s water and discharge temperature (Claeson & Coffin, 2016). In warmer waters, desirable salmon food sources such as mayfly, stonefly and caddisfly nymphs die off and are replaced by other insects (midges and mosquito larvae) that are much less desirable as food for salmon (Effects of Elevated Water Temperatures on Salmonids, 2000).  Cold water fish such as salmon relay on benthic insect populations as a source of food and decreasing benthic insect populations makes an environment unsuitable for salmon to live in (Claeson & Coffin, 2016, Harrison, 2008).  

The best plan to solve this problem and save both the salmon and orca whale population would be to remove the dams from the Columbia and Snake rivers. Removing the dams would help restore the salmon population that the southern resident orcas so heavily rely on. There have been previous dam removals in the Columbia and Snake river area that have resulted in a successful increase in salmon population. In 2012, removing the Condit Dam from the White Salmon River (a tributary to the Columbia River) restored upstream migration access for the first time in 100 years (Allen et al., 2016, p.192). The number of redd counts (the number of salmon spawning nests) shows the increase in the salmon population (Allen et al., 2016, p.197). In the pre-dam model for the Tule fall Chinook Salmon it’s redd count increased by 60% since dam removal and the Upriver bright fall Chinook Salmon redd count increased from no abundance to around 4,251 redds after dam removal in 2013 (Allen et al., 2016, Table 2). This dramatic increase in spawning means a greater number of salmon are being produced. Other large dam removals include Washington State’s Glines Canyon Dam and the Elwha Dam hydroelectric dam. These dams were removed in 2011 (Nijhuis, 2014). Now salmon can be seen migrating past the former dam sites and as salmon populations recover, research expect the whole food web to benefit (Nijhuis, 2014). These cases set forth by the Condit, Glines Canyon and Elwha Dam removal is further evidence that dam removal in the region can be beneficial to the salmon population.

While these cases have made it clear that dam removal is the best option to restore the salmon population, there are other options available. Alternative methods such as a permanent adult fish ladder can be seen on the Lower Granite Dam (Conca, 2016). However, fish ladders can be problematic because they elevate water temperatures to form a “thermal barrier” that stops adults from migrating upwards into warm waters (Conca, 2016). One method the US Army Corps of Engineers attempted to face this problem was releasing Dworshak reservoir water in to cool the Snake River (Lower Granite Adult Fish Ladder Temperature Improvement System, 2016). Another alternative method is  “daylighting” juvenile fish passage (Conca, 2016).  This is when  juvenile fish passage is allowed through a large elevated bypass flume leading to the Juvenile Fish Facility just downstream of the dam (Conca 2016). Save Our Wild Salmon (a nationwide coalition working to restore salmon and steelheads to the rivers) also argues that the federal government is relying on these unreliable alternative methods such as barging and trucking salmon around the dams and limiting the amount of water in the river (Bogaard, 2017). Implementing these alternative methods have already cost billions of dollars to the US taxpayers and over the past twenty years, researchers still also haven’t found conclusive evidence that federal salmon recovery actions succeeded in helping restore these fish (Bogaard, 2017). Federal agencies have spent more than $8 billion in attempts to restore Columbia and Snake River salmon (Bogaard, 2017). Each year more than $550 million in funding goes to NOAA Fisheries, the Army Corps of Engineers and other federal agencies for this effort (Bogaard, 2017). Removing these dams could be cheaper than these other restoration efforts and revive both the salmon and orca populations. Advocates for dam removal also argue that the removal of these dams is a viable option because they produce most of their power in the spring when it’s not crucial for Northwest power supplies, and it would be relatively simple and inexpensive when comparing the cost to other alternative methods  (Baker & Peterson, 2017).

The main reason some are still resistant to removing these dams is because they provide a significant source of hydropower. There are four main hydroelectric power providing dams on the Snake river; these are the ICE Harbor, Lower Monumental, Little Goose and Lower Granite Dams (Conca, 2016). According to Conca (2016) Ice Harbor Dam produces 1.7 billion kWhs/yr, Lower Monumental dam produces 2.3 billion kWhs/yr, Little Goose dam produces 2.2 billion kWhs/yr and Lower Granite dam produces 2.3 billion kWhs/yr. (Conca, 2016). Washington’s hydroelectric power provides more than two-thirds of Washington’s net electricity generation and almost nine-tenths of the state’s renewable power generation (U.S Energy Information Administration, 2017). As for the Columbia river, The Grand Coulee Dam is the largest hydroelectric power producer in the United States, with a total generating capacity of 6,809,000 kilowatts (U.S Energy Information Administration, 2017). The communities that depend on the Snake and Columbia river’s hydroelectric dam power are then faced to question if there are potential ways to provide Washington state a renewable energy source that doesn’t hurt the salmon population . To end this debate an alternative energy source (specifically wind energy) needs to replace the hydropower provided by the dams on the Snake and Columbia river so that the dams may be removed.

This replacement energy source absolutely needs to be renewable because Washington passed renewable energy standard (RES) legislation in 2006 that requires certain utilities to have fifteen percent of their electricity sales from renewable resources by 2020 and to invest in energy efficiency (American Wind Energy Association, 2014). One viable, renewable energy source that may be used to replace hydroelectric power provided by these dams would be wind energy. In fact, in 2015 Washington ranked ninth in the nation in wind energy electricity generation (U.S Energy Information Administration, 2017). There are still some skeptics regarding the reliability of wind turbines and their ability to produce enough power to feasibly replace other energy sources.  For example, some claim that wind turbines are unpredictable, not dependable enough for consistent power generation and only produce 8% of their total system capacity (Edmunds, 2014).  However, this is mostly incorrect and invalid in this case. Wind energy has already proven itself feasibly reliable in Washington, it’s the state’s second largest renewable energy generation contributor with over 3,000 megawatts of installed capacity (U.S Energy Information Administration, 2017). This can be compared to the 6,910 megawatts of hydroelectricity generated Washington net electricity (U.S. Energy Information Administration – EIA – Independent Statistics and Analysis, 2017). Wind energy is also relied upon as a common renewable resource of choice to meet renewable energy legislation requirements (American Wind Energy Association, 2014).

New wind turbine farms to replace the hydroelectric dams can be installed by PSE (Pudget Sound Energy), the largest Northwest utility producer of renewable energy (Hopkins Ridge Wind Facility). They own and operate the large wind farms including the Hopkins Ridge Wind Facility located in Columbia County (Hopkins Ridge Wind Facility). The Hopkins Ridge Wind Facility started in 2005 and consists of 87 turbines  producing an average annual output of about 465,000 megawatt hours, sufficient to power 41,000 households (Hopkins Ridge Wind Facility). If more winds farms like Hopkins Ridge Wind Facility were developed to help the state of Washington develop more wind energy, the people of Washington wouldn’t need the hydroelectric power provided by the dams and they could be removed to help prompt orca and salmon population recovery.

The best possible solution for this issue is to harness and develop more wind energy in the state of Washington. This energy replacement will allow for the dams to be removed without depriving the people of Washington of electricity. Being able to remove these dams is critical for the survival of the salmon population within the Columbia and Snake rivers. Sustaining the salmon population is critical for the survival of the southern resident orca population (a beloved tourist attraction in the state of Washington). Saving the salmon population will also help the National Marine fisheries service in achieving the recovery plan outlined for southern resident orca whales in 2008 (National Marine Fisheries Service. 2008).  In short, finding an alternative renewable energy source to replace the dams on the Columbia and Snake rivers is imperative for the survival of the salmon and orca whale populations affected by these dams. Lolita the orca was taken from this population and is now suffering as a result (Save Lolita, n.d.; WDC, 2017). She serves as an example of how hard captivity is for orcas and why preserving the southern resident population in the wild is their only true chance for survival.

AUTHORS

Marilyn Donovan – Animal Science: Pre-vet

Lauren Baldwin – Environmental Science

Connor Taylor – Environmental Science

REFERENCES

Allen, M. B., Engle, R. O., Zendt, J. S., Shrier, F. C., Wilson, J. T., & Connolly, P. J. (2016).  Salmon and steelhead in the white salmon river after the removal of                   Condit Dam–Planning efforts and recolonization results. Fisheries, 41(4), 190-203. doi:10.1080/03632415.2016.1150839

American Wind Energy Association. (2014, August 12). State wind energy statistics: Washington. Retrieved from http://awea.files.cms-plus.com/FileDownloads

             /pdfs/washington.pdf

Barker, R., & Peterson, B. (2017, July 10). Fate of the Pacific Northwest orcas is tied to having enough Columbia River salmon. Retrieved November 05, 2017, from

                http://www.tri-cityherald.com/news/local/article160618424.html

Bogaard, J. (2017). Why Remove The 4 Lower Snake River Dams? Retrieved November 30, 2017, from http://www.wildsalmon.org/facts-and-information/why-

                remove-the-4-lower -snake-river-dams.html

Bonneville Power administration , U.S. bureau of reclamation, U.S. army corps of engineers. (2001, April). THE COLUMBIA RIVER SYSTEM INSIDE STORY.                       Retrieved November 13, 2017, from https://www.bpa.gov/power/pg/columbia_river_inside_story.pdf

Claeson, S. M., & Coffin, B. (2016). Physical and biological responses to an alternative removal strategy of a moderate?sized dam in Washington, USA. River                             Research and Applications,  32(6), 1143-1152. doi:10.1002/rra.2935

Conca, J. (2016, December 01). Will Removing Large Dams On The Snake River Help Salmon?  Retrieved November 05, 2017, from                                                                         https://www.forbes.com/sites/jamesconca/2016/11/29/  will-removing-large-dams-on-the-snake-river-help-salmon/#6a09e204155b

Edmunds, D. R. (2014, October 27). Study: Wind Turbines are ‘Expensive, Unreliable and  Inefficient’. Retrieved November 30, 2017, from                                                           http://www.breitbart.com/london/2014 /10/27/government-is-whistling-in-the-wind-on-practical-case-for-wind-power/

Effects of Elevated Water Temperatures on Salmonids. (2000, July). Retrieved December 3, 2017, from                                                                                                                            https://fortress.wa.gov/ecy/publications/publications/0010046.pdf

Ford, J. K., Ellis, G. M., Barrett-Lennard, L. G., Morton, A. B., Palm, R. S., & Iii, K. C. (1998). Dietary specialization in two sympatric populations of killer whales                     (Orcinus orca) in coastal British Columbia and adjacent waters. Canadian Journal of Zoology, 76(8),  1456-1471. doi:10.1139/cjz-76-8-1456

Ford, J. K., Ellis, G. M., Olesiuk, P. F., & Balcomb, K. C. (2009). Linking killer whale survival and prey abundance: food limitation in the oceans apex predator?                         Biology Letters, 6(1), 139-142. doi:10.1098/rsbl.2009.0468

Grace, S. (2015, September 29). Economic Value. Retrieved November 26, 2017, from  https://srkwcsi.org/the-economic-value-of-southern-resident-killer-                               whales/

Harrison, J. (2008, October 31). DAMS: IMPACTS ON SALMON AND STEELHEAD.  Retrieved November 14, 2017, from                                                                                           https://www.nwcouncil.org/history/DamsImpacts

Harrison, J. (2016, May 4). ENDANGERED SPECIES ACT AND COLUMBIA RIVER SALMON AND STEELHEAD. Retrieved November 14, 2017, Retrieved from                   https://www.nwcouncil.org/history/EndangeredSpeciesAct

Herrera, C. (2017, June 7). Lolita’s tank at the Seaquarium may be too small after all, a new USDA audit finds. Retrieved December 01, 2017, from                                                  http://www.miamiherald.com/news/business/article154928954.html

Hopkins Ridge Wind Facility. (n.d.). Retrieved November 30, 2017, from https://pse.com/aboutpse/EnergySupply/Pages/Wind-Power.aspx

Lower Granite Adult Fish Ladder Temperature Improvement System. (2016, May 25). Retrieved  December 3, 2017, from                                                                                                                                                                                                                                                                                                                                        http://.nww.usace.army.mil/Portals/28/docs/programsandprojectsandprojects/Granite%20temp%20Improvement/FS_160525LowerG_LadderTempImprovementFinal.pdf 

National Marine Fisheries Service. (2008). Recovery Plan for Southern Resident Killer Whales

                 (Orcinus orca). National Marine Fisheries Service, Northwest Region, Seattle,Washington.

Nijhuis, M. (2014, August 27). World’s Largest Dam Removal Unleashes U.S. River After

                 Century of Electric Production. Retrieved December 3, 2017,from https://news.

                 nationalgeographic.com/news/2014/08/140826-elwha-river-dam-removal-salmon-science-olympic/

NOAA Fisheries. (2015, January 08). Killer whale (Orcinus orca). Retrieved December 02,

                  2017, from http://www.nmfs.noaa.gov/pr/species/mammals/whales/killer-whale.html

O’Connor, S., Campbell, R., Cortez, H., & Knowles, T. (2009). Whale Watching Worldwide: tourism numbers, expenditures and expanding economic benefits, a                       special report from  the International Fund for Animal Welfare, Yarmouth MA, USA, prepared by Economists at Large. Retrieved from                                                   http://www.ifaw.org/sites/default/files/whaleWatchingworldwide.pdf

O’Malley, M. F., (2005). Wildlife Viewing Recreation: Economic Stimulant and Habitat Protection Tool. Retrieved from                                                                                                 http://depts.washington.edu/uwconf/2005psgb /2005proceedings/papers/E10_OMALL.pdf

Save Lolita, Raising Awareness for Lolita the Orca. (n.d.). Retrieved December 1, 2017, from https://www.savelolita.org/

The Salmon Life Cycle. (n.d.). Retrieved December 03, 2017, from https://www.nps.gov/olym/learn/nature/the-salmon-life-cycle.htm

U.S Energy Information Administration. (2017, November 16). Washington – State Energy

                  Profile analysis – U.S. Energy Information Administration (EIA). Retrieved from https://www.eia.gov/state/analysis.php?sid=WA

U.S. Energy Information Administration – EIA – Independent Statistics and Analysis. (2017, July). Retrieved December 03, 2017,

                   from https://www.eia.gov/state/?sid=WA#tabs-4

WDC. (2017). The Fate of Captive Orcas. Retrieved December 01, 2017, from http://us.whales.org/wdc-in-action/fate-of-captive-orcas

Dealing with Coal Mining Effects

In an area of lush green wildlife and rolling mountains, disaster plagues the lives of many who live in the Adirondack area. Not only does mountaintop removal destroy the beautiful landscape that many residents treasure, but it leaves these people with alarming conditions everyday. Maria Gunnoe of Bobwhite, West Virginia, raised by a coal mining family and left land to raise her own family on, lives in constant fear of a disaster waiting to happen. Due to a mountaintop removal project launched in 2000, Maria’s property flooded 7 times in 3 years, even washing away the access bridge to her street and the family’s dog. Because of the threatening conditions, Maria has stated that her children go to sleep prepared to be ready at a moment’s notice to leave their house whenever heavy rain ensues. Now living in a community wrecked by land degradation and poverty, Maria cannot afford nor find anyone to buy her property and cannot provide her family with simple resources, such as clean water (Palone, 2013). Rather than fleeing and giving her community over to the coal companies, Maria is a leader in the movement to end mountaintop removal and organizes to strengthen legislation that is supposed to protect her rights. “This is absolutely against everything that America stands for. And I know that we have better options than this. We do not have to blow up our mountains and poison our water to create energy. I will be here to fight for our rights. My family is here, we’ve been here for the past 10 generations, and we’re not leaving. We will continue to demand better for our children’s future in all that we do” (Mountain Heroes: Maria Gunnoe, 2012, p. 1).

Continue Reading

Comprehensive Assessment of Wind Turbine Effects on At-Risk Bird Populations

Derek Power – Building Construction Technology

Lily Coughlin – Animal Science

Josh Cardin – Planet Soil & Insect Sciences

Wind power is one of the fastest growing branches of the energy industry and is a crucial part of our world’s plan for renewable energy. Wind farms are an incredibly sustainable and clean fuel source. Wind energy does not pollute the air like power plants that rely on combustion of fossil fuels, such as coal or natural gas. Wind energy is also categorized as a form of solar energy so as long as the sun keeps shining and the wind keeps blowing, the energy produced can be harnessed to send power across the grid. In addition to being sustainable and clean, wind farms benefit the economy as well. The cost of generating wind energy is similar to that of fossil fuels (Fehrenbacher, 2015). The industry also creates jobs, and in many cases the farms can be built on existing ranches or farms (“Advantages and Challenges,” 2013). According to the Wind Vision Report, wind has the potential to support more than 600,000 jobs in manufacturing, installation, maintenance, and supporting services by 2050 (“Advantages and Challenges,” 2013). Continue Reading

Reducing Wind Energy-Related Mortality in Threatened Raptors

Wind turbines pose a greater threat to threatened species, like the California condor.

Wind turbines pose a greater risk to threatened species, like the California condor.

Sheridan Devlin- Environmental Science

Rebecca Haber- Pre-Veterinary Science

12/06/2016

Rehabilitators took California condors into custody in order to secure their population in the 1980s (Avants, 2016). Recently they released Condor AC-4, a male in the California Condor Recovery Program, back into the wilderness. AC-4 fathered the first captive-born chick and through controlled breeding in captivity, the number of California condors rose from 22 to 435 (Avants, 2016). After spending 30 years in the San Diego Zoo Safari Park, rehabilitators finally gave him a clean bill of health and decided he was fit to return to the wilderness again after blood levels indicated low lead content (USFWS, 2016). AC-4 serves as a reminder that the California condor’s population is still slowly recovering. This threatened species still requires protection, and wind energy–lauded for its environmental benefits–could ironically and unintentionally lead to their extinction (Platt, 2013). Continue Reading