Say “Neigh” to Feral Horses: How to Control the Overpopulation of an Iconic Species

 

(©Gail H. Collins/USFWS)

According to Mark Wintch, a farmer in Nevada, “If I put my cows out here they will starve” (Philipps, 2014, para. 3). Farmers play a key role in producing food for all of us to eat. This difficult job of ensuring that there is sufficient land and food for their animals shouldn’t come with any more obstacle, but their job gets even harder with the increasing population of wild horses. Feral horses pose numerous threats to not only United States ecosystems, but also to those using public lands for agricultural purposes.

Although horses impact farmers, it is difficult to manage them because they are considered a charismatic or iconic species in many places including the United States (Bhattacharyya, Slocombe, & Murphy, 2011). A charismatic species is one that humans place a unique value upon in regards to cultural, historical or personal significance, or based on aesthetics.  In places like British Columbia, horses pose similar threats, yet management actions became restricted due to political and cultural values placed on horses due to historical significance (Bhattacharyya et al., 2011).

Even though a majority of American society admires feral horses, wild horses still degrade soil and destroy vegetation cattle farmers use to feed their animals. This problem of limited space and vegetation for cattle will only get worse as horse populations grow. Without proper management, the horse population may near 100,000 wild horses by 2019-2020 (Philipps, 2014, para. 7). Since feral horses share 60-80% of the diet of cows, an increase of horse population will affect a farmer’s life even more (Beever & Brussard, 2000, p. 238). Mark Wintch now needs to import his cattles’ food from elsewhere because he can’t put cattle out on pasture due to destroyed land (Philipps, 2014).  Today, 155 million acres of land gets leased out to cattle farmers, which is nearly 25% of the total 640 million acres of United States public land (Bureau of Land Management [BLM], n.d;Vincent, Hanson & Argueta, 2017).  Feral horses inhabit approximately 34 million acres of grasslands and fields on public land in Montana, Idaho, Nevada, Wyoming, Oregon, Utah, California, Arizona, North Dakota and New Mexico as well the Shackleford, Sable, Assateague, and Cumberland Islands (Bradford, 2014). Farmers can lease public land and increase their contributions to the economy when horses reach a manageable population size.

Feral horses in the United States are causing approximately five million dollars in damage to the United States ecosystems’ vegetation (Pimentel, Lach, Zuniga, & Morrison, 2000, p. 54). Since these animals do not belong to any organization, people or group, they are not contributing to the economy and only inflicting ecological damage. In contrast, farmers who use federal land to graze are required to pay the Forest Service or the Bureau of Land Management for leases and permits to graze.  Feral horses pose an economic threat as they are causing only damage to vegetation found on public lands and contributing nothing.

Horses follow no invisible boundary where one farmer’s land ends and another begins, which is one of the reasons why feral horses negatively impact cattle farmers in the United States. Cattle farmers are forced to sue the government just so that the feral horses get removed from the land that they lease. Farmers are even encouraged to “voluntarily” reduce their herds to half of their original size just so that they can keep up with the damage done by feral horses on grazing land  (Philipps, 2014).

There has been a long history of horses in our country. While interwoven with United States culture, their ecological clash negatively affected the United States’ ecosystem.  Horses were introduced to North America by Spanish explorers in Mexico during the early 1500s and slowly roamed northwards into the American heartland (Kirkpatrick & Fazio, 2010). Horses overpopulated these areas because of the lack of natural predators coupled with an abundant amount of grassland (Bradford, 2014). Currently, the government wonders what’s the best way to combat this overpopulation. Managing these horses needs to become a bigger focal point for federal regulators. For proper management of wild horses, the United States government must classify wild horses as an invasive species. The definition of an invasive species is an organism that causes ecological harm where it isn’t native (National Oceanic and Atmospheric Administration [NOAA], 2017, para. 1). Horses fit this definition as they affect the U.S ecosystem while they originally came from overseas. The federal government does not define horses as an invasive species, but is currently under growing pressure to add horses to the invasive species list. Due to the dwindling wild horse population in the 1970s, wild horses were initially protected by the Horse and Burro Act of 1971, but with added protection the wild horse population exponentially grew and caused dramatic impacts to the United States ecosystem (Committee to Review the Bureau of Land Management Wild Horse and Burro Management Program, 2013, p. 15). These horses are feral and a nuisance to ranchers because of their effects on prairie grasslands, which in turn limits the amount of food for cattle.

(The National Wild Horse and Burro Center at Palomino Valley)

Before the Horse and Burro Act of 1971, there was growing widespread public concern about the wellbeing of horses (Committee to Review the Bureau of Land Management Wild Horse and Burro Management Program, 2013, p. 15). Unlike the current state of feral horses where they are viewed as a nuisance, wild horses used to have a declining population. Horses died due to livestock competition and roundups, where the horses were sold for slaughter (p. 15). The public looked for a way to provide a more stable environment for these creatures. The Wild Horse and Burro Act was established in 1971, giving horses allocated federal lands to roam and graze (National Wild Horse and Burro Program, 1971). The act entails the difficult process of controlling the horse population. Horses have no natural predators and under such circumstance reproduce rapidly (Bradford, 2014). The legislation makes it illegal to harm or kill horses on Federal land (National Wild Horse and Burro Program, 1971, Sec. 8). While the act seemed great at first, it became clear that there was far too many horses for the allotted land. Updated legislation includes the Stewart Provision, a law enacted in Utah that relocates horses to greener pastures to save the ecological integrity of the rangeland (St. George News, 2016). This is a good idea to start, but there are way too many horses for relocation. The number of horses needs to decrease by 32,768 to meet the target for manageable rangelands (Bureau of Land Management [BLM], 2017a, table 1). The government has recognized the issue of feral horses with legislative measures, but more action needs to be taken to effectively reduce their numbers and stop their negative impact on the United States Ecosystem.

United States ecosystems have suffered immensely due to the presence of feral horses over the years. Soil quality is an important and influential factor for successful agriculture.  The overpopulation of feral horses degrades soil quality in different ways. Due to trampling the soil around watering holes or common grazing sites, horses impacted the soil (Davies, Collins, & Boyd, 2014). In an experiment done by Davies, Collins and Boyd (2014), areas used for research were defined by exposure to feral horses; horse exposed or horse excluded. In areas where horses were excluded and not grazing, the soil stability was 1.5 times greater than horse exposed areas (p. 127). In horse excluded areas components of the soil, or soil aggregates, became more resistant to naturally occurring causes of erosion such as rain or wind. In horse exposed areas, the amount of force required to penetrate the soil was 2.5 times greater than in areas not exposed to horses, showing that high concentrations of feral horses compact the soil to a significant level (Davies et al., 2014, p. 127).  Due to the presence of horses, horse included areas are at a higher risk of erosion due to degraded soil quality (Davies et al., 2014). Erosion directly impacts agriculture as it removes the top-soil, the most productive and important part of the “soil profile” for agriculture (Queensland Government, 2016).

Feral horses degrade soil quality and thus inhibit agricultural productivity. With increasing soil compaction due to high densities of feral horses, vegetation is unable to penetrate the soil and grow. This leads to greater areas of bare soil exposure (Zalba & Loydi, 2014).  There is a high correlation between proximity to a horse dung pile and the amount of bare ground exposure likely due to the horses trampling areas where dung piles are found causing vegetation to not grow (Zalba & Loydi, 2014). Additionally, in areas that feral horses had access to, the amount of bare ground exposure was 7 times greater than in horse excluded areas in regards to riparian vegetation (Boyd, Davies & Collins, 2017, p. 413). This signifies that with a high density of feral horses present in an area, less vegetation can grow and thus more exposed soil is seen. Agriculture is affected by the presence of horses because vegetation cannot grow in such compacted and eroded soil.

Along with a markedly lower amount of vegetation, presence of feral horses negatively affects the species diversity of vegetation. Low soil quality and increased bare ground exposure decreases the ability of vegetation to grow which negatively impacts species diversity among vegetation. Plant species diversity was 1.2 times greater in horse excluded areas as opposed to horse included areas (Davies et al., 2014). With less vegetation present to hold the soil together and absorb moisture, the soil becomes more susceptible to water inundation and thus erosion.  Horses have the ability to degrade habitat quality over time by altering the seed stock and lower the carrying capacity of the soil for vegetation (Turner, 2015). The ability of vegetation to grow and the type of vegetation is important for ranchers as cattle require grasslands to graze (Philipps, 2014). The overpopulation of feral horses can significantly impact vegetation growth due to overgrazing and compacting the soil thus taking away resources needed for cattle farming.  

The overpopulation of feral horses negatively impacts United States ecosystems along with cattle farmers. As of March of 2017, there is a population of 59,483 wild horses in the United States which is an 8% increase from 2016. The wild horse population constantly trends upward due poor management techniques (BLM, 2017a). This population size is gravely too high and needs to decline to a manageable population of 26,715 (BLM,  2017a).  If horses get managed properly, then the impact wild horses have on the United States ecosystem will decrease (para. 1).

Horse management practices such as adoption and fertility management were used in the past, but proved unsuccessful in reducing horse populations. In the early 2000s, horses were captured and brought to Bureau of Land Management holding facilities which succeeded in making a 2:1 ratio of horses in the wild to animals removed for adoption (Committee of Bureau of Land Management, 2013, p. 16). From the total population of horses in these facilities, only around 4%, or 2,912 horses, were adopted out (BLM, 2017b; BLM, 2017a). The number of horses adopted is low because most of these horses are labeled as “unadoptable” and strict guidelines prohibit people from adoption. Unadopted horses can’t be sold out for adoption because of uncontrollable or tamable behaviors and age (Columbia Broadcasting System/Associated Press [CBS/AP], 2008, para. 8). In 2008 when there were 32,000 horses in captivity, between 500 and 2,500 horses got labeled as unadoptable (CBS/AP, 2008, para. 6-9). This means that there is approximately 2-8% of the horse population that are unadoptable.  Unadoptable horses or horses waiting to get adopted get brought to long term holding facilities where they are provided proper care, but uses a tremendous amount of government funding (Committee of the Bureau of Land Management, 2013, p. 212).

Although there was success with capturing, there was little success with getting the horses adopted out. In 2012, there were still 45,000 horses in holding facilities which used 60% of the Wild Horse and Burro budget (Committee to Review the Bureau of Land Management Wild Horse and Burro Management Program, 2013, p. 16). This totals close to $40 million dollar per year to maintain these horses (Committee to Review the Bureau of Land Management Wild Horse and Burro Management Program, 2013, p. 301). This would mean allotting around $900 per horse already in captivity per year. If more holding facilities got built to store the approximately 33,000 horses needed to be removed for manageable amount in the wild, it would cost the U.S. nearly $30 million extra. This process would cost nearly $70 million per year.

Not only are adoptions bad for the economy and inefficient, capturing and transporting increases horses stress levels (Independent Technical Research Group, 2015). Stress and proper handling was measured on live horses in Australia using different management techniques. The levels were measured based on human interaction with the horses and the time it took for the management technique to take place per horse. According to studies performed on wild horse populations in Kosciuszko National Park, management practices such as trapping and transport are used to bring wild horses to holding facilities (Independent Technical Research Group, 2015, Figure 1). The study discovered that both capture and transport affected the horses’ behavior, social structure, health, and stress (Independent Technical Research Group, 2015, p. 19-22; p. 33-39). Trapping horses normally takes several hours to perform. Transport to holding facilities can take hours to days with limited food and water for the horses. Also, these horses were never handled by humans which increases the fear and stress of the animals. The stress of capturing and transporting horses to holding facilities and the economic impact of these facilities are reasons why these practices don’t manage horses properly. With a more efficient management strategy, the horse population will decrease which, in turn, will free up land and resources for cattle farmers and ranchers.

Similar to capturing horses for adoption, fertility control is another method used in the past yet unsuccessful in decreasing the population to a manageable size.  The two main contraceptives used are Porcine Zona Pellucida (PZP) and Gonadotropin releasing hormones (GnRH). Both drugs control the estrous cycle in horses manipulating a female horse’s (mare) ability to get pregnant (Committee to Review the Bureau of Land Management Wild Horse and Burro Management Program, 2013). Contraceptives proved unpredictable with repeated use and the difficulty of hand injections (Committee to Review the Bureau of Land Management Wild Horse and Burro Management Program, 2013, Table S-1). Fertility control also takes a while to decrease populations. When using PZP as a fertility control method, it took 6 years of annual injections for the horse population to stabilize and not increase (Fort Collins Science Center, 2017, para. 6). It then took around another 12 years to reduce the population size down from 150 horses to 115 horses (National Park Services, 2013, Figure 1). This horse population decreased by only 37% over the course of 12 years. With the current population of horses in the United States, it would take around 24 years to reduce the current population size to a manageable number. Also, PZP increases the average age of mortality for mares ( National Park Services, 2013, p. 123-124). Mares not treated with PZP contraception only lived to an average of 6.47 years while mares given PZP lived on average 19.94 years.  The decrease in mortality increases the age limits of the horses. Since horses live longer, the fertility control is used for a longer period of times, and the horses still affect the environment.

When trying to reduce the horse population down by around 33,000 horses, it will take a lot of time and money. The vaccine, known as PZP, costs $24 per dose and lasts for one year (Masters, 2017). The lifespan of a typical adult horse given PZP is about 20-25 years (Blocksdorf, 2017), meaning that over a horse’s lifetime birth control would cost approximately $540. Incorporating the number of horses that need to be eradicated, this would bring the total cost of the birth control method close to $18 million over a horse’s lifetime; a staggering statistic that shows fertility control isn’t a sustainable or smart choice.

Not only is fertility contraception expensive to reduce horse population size, but it is also not the best method in terms of efficacy. In order for both PZP and GnRH, horses are captured and given the drug by hand or by using a dart (Committee to Review the Bureau of Land Management Wild Horse and Burro Management Program, 2013). Capturing horses then giving the horse the contraceptive is stressful for the horse. According to Kosciuszko National Park, PZP increases the desire for stallions to stay near mares (Independent Technical Research Group, 2015, p. 64-67). When mares are given PZP they become infertile, but appear receptive to male horses (stallions). This extendeds the workload for stallions during breeding seasons because they spend more time attempting to breed with infertile females. Stallions then put forth more energy to stay with the mares, which causes the stallions to become emaciated. Stallions increased reproductive behaviors by 55% when a mare was given PZP (Independent Technical Research Group, 2015, p. 64).The stallions focus more of their time on breeding than eating food. GnRH has a side effect that encourages mares to eat more vegetation (Ransom et al., 2014). Mares act infertile, allowing for increased energy use to eat more vegetation. With the use of contraceptives, horses will continue to negatively impact public agricultural land due to consuming of vegetation. Since there are so many side effects and issues with fertility control, other methods should be used to manage horse populations.

Wild horse populations are very hard to manage and bring down to a capacity suitable for the United States ecosystems. Methods such as adoptions and fertility attempted in the past reached little success. The best option for horse management is culling. Culling is the systematic killing of animals for management purposes. Culling is cost effective, ethical if done properly, and reduces the horse population rapidly (Galapagos Conservancy, n.d). Across the globe, culling projects have been shown to reduce the population of invasive species.

Culling is a common practice used to combat the negative impacts invasive species place on an ecosystem. For instance, culling eradicated an invasive species of goats on Isabela island in the Galapagos. The goats ate plants that hindered the natural ecosystem of the tortoises (Galapagos Conservancy, n.d). The islands infestation totaled around 100,000 goats. The culling project called the Isabela Project brought the number of goats down to 266 on Isabela island and other small surrounding islands. The project achieved this by getting funding to form a hunting team to eradicate the goat population. Helicopters served their purpose by quickly ridding areas of goat populations. By using helicopters, it took only one year to eliminate all goats from Santiago Island. After all the goats got culled, they were left to decompose (Hirsch, 2013, para. 8). The decomposing goats helped to give nutrients back to the Isabella Islands ecosystem that the goats originally destroyed. This concept of leaving the body of an animal in the environment to restore an ecosystem would work well after horse cull.

The removal of goats on Santiago island cost $8.7 million (Cruz, Carrion, Campbell, Lavoei, & Donlan, 2009, p. 1). Santiago Island had over 79,000 goats killed which meant it cost approximately $110 per goat. This amount of money can be compared to a case study on the cost of culling kangaroos in Australia. The government of Australia conducted culls with kangaroos due to their extremely high numbers (500 million) and consequent overgrazing of the land (Sosnowski, 2013). In 2013 there were 1,504 kangaroos shot at a total cost of $273,000, which averages to $182 per kangaroo (Raggatt, 2013).

The data from the two case studies can help predict the cost of culling horses.  This would translate to a total of $5,963,776, a substantial savings over the $18 million birth control method and $70 million captivity cost. The urgency to cull the horse population is due to the rate at which it is increasing by: doubling in size every 4-5 years (National Horse & Burro Rangeland Management Coalition, 2016). A cull seems harsh, but it’s a feasible option that is the quickest way to revert our rangelands back to their original state.

 

Helicopters used to control the wild goat population on the Isabela islands was the quickest and least stressful way of controlling invasive populations as it allowed for the most rapid means of rounding up and killing the goats (Galapagos Conservancy, n.d). This practice works well with culling large population of horses on rangelands. According to data collected from studies performed at Kosciuszko National Park, aerial shooting was the most humane method of reducing and managing an overpopulation of wild horses (Independent Technical Reference Group, 2015, Table 1). When using aerial shooting, there is no need to capture the horses (Independent Technical Research Group, 2015, p. 11) which decreases the amount of stress on the animals. Aerial shooting involves trained shooters to target horses in smaller groups and deliver instantaneous killing head shots (Independent Technical Research Group, 2015, p. 52-59). The head shots quickly kills the horse and leads to less suffering over time for each individual horse.  Aerial shooting takes an average of 73 seconds to chase and kill the horses (Independent Technical Research Group, 2015, p. 3). Aerial shooting is a quick method of reducing the population size of wild horses in a way that leads to less stress over long periods of time.

Although horses are a beloved and charismatic species to the United States, the wild horses have overpopulated and in turn negatively impact the United States ecosystems.  These animals degrade the soil and the ability of vegetation to growth. These issues negatively affect the lives of cattle farmers that reside in the Western United States. To combat the overpopulation of wild horses, culling initiatives should rapidly, efficiently and ethically decrease the population of horses. A culling initiative is the most effective and feasible means of combating overpopulation of wild horses. Lethal management will drastically decrease the population of wild horses in a short amount of time. Bringing the horse population down to 26,715 by the end of the year will allow the ecosystems to rebound to a more natural state (BLM, 2017a). Cattle farmers and agriculture will recover as the ecosystems bounce back from all of the years of exploitation by the overpopulation of feral horses.

AUTHORS

Lydia Graham – Natural Resources Conservation

Samuel Katten – Pre-Veterinary/Animal Science

Samuel Petithory – Environmental Science

 

REFERENCES

Beever, E. A., Brussard, P. F. (2000). Examining ecological consequences of feral horse grazing using exclosures. Western North American Naturalist, 60, 236-254. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredi=1&article=1146&context=wnan

Bhattacharyya, J., Slocombe, S. D., Murphy, S. D. (2011). The “wild” or “feral” distraction: effects of cultural understandings on management controversy over free-ranging horses (equus ferus caballus). Human Ecology, 39, 613-625. Doi: 0.1007/s10745-011-9416-9

Blocksdorf, K. (2017). Ever wonder how long horses live? Retrieved from https://www.thespruce.com/how-long-do-horses-live-1887384

Boyd, C.S., Davies, K.W., & Collins, G.H. (2017). Impacts of feral horse use on herbaceous riparian vegetation within a sagebrush steppe ecosystem. Rangeland Ecology & Management (Elsevier Science), 70(4), 411-417. doi:10.1016/j.rama.2017.02.001

Bradford, A. (2014). Mustangs: Facts About America’s Wild Horses. Retrieved from https://www.livescience.com/27686-mustangs.html

Bureau of Land Management [BLM].  (n.d.). Livestock grazing on public lands. U.S. Department of the Interior. Retrieved from https://www.blm.gov/programs/natural-resources/rangelands-and-grazing/livestock-grazing

Bureau of Land Management [BLM]. (2017a). On-Range population estimates as of March 1, 2017. U.S Department of the Interior. Retrieved from https://www.blm.gov/programs/wild-horse-and-burro/about-the-program/program-data

Bureau of Land Management [BLM]. (2017b). Wild horse and burro adoptions into private care. U.S Department of the Interior.  Retrieved from https://www.blm.gov/programs/wild-horse-and-burro/about-the-program/program-data

Columbia Broadcasting Services/Associated Press [CBS/AP]. (2008). Horse population control may be euthanasia. CBS Interactive INC. Retrieved from https://www.cbsnews.com/news/horse-population-control-may-be-euthanasia/  

Committee to Review the Bureau of Land Management Wild Horse and Burro Management Program. (2013). Using science to improve the BLM wild horse and burro program. National Academies Press, 1-436. Retrieved from: https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprd3796106.pdf

Cruz, F., Carrion, V., Campbell, K., Lavoie, C., & Donlan, C. (2009) Bio-economics of large scale eradication of feral goats from Santiago Island, Galapagos. Journal of Wildlife Management, 73(2), 191-200. Doi: https://doi.org/10.2193/2007-551

Davies, K. W., G. Collins, and C. S. Boyd. (2014). Effects of feral free-roaming horses on semi-arid rangeland ecosystems: an example from the sagebrush steppe. Ecosphere
5(10): 1-14. doi:10.1890/ES14-00171.1

Fort Collins Science Center. (2017). Reducing population growth rates: fertility control in wild horse mares. United States Geological survey. Retrieved from https://www.fort.usgs.gov/wildhorsepopulations/contraception

Galapagos Conservancy (n.d). Project Isabella. Retrieved from https://www.galapagos.org/conservation/conservation/project-areas/ecosystem-restoration/project-isabela/

Hirsch, J. (2013). Exterminating the goats of galapagos. Modern Farmer. Retrieved from https://modernfarmer.com/2013/09/killing-goats-galapagos/

Independent Technical Reference Group. (2015). Assessing the humaneness of wild horse management methods. Office of Environment and Heritage, 1-70. Retrieved from http://www.environment.nsw.gov.au/resources/protectsnowies/knp-sssessing-humaneness-wild-horse-management-methods-2804.pdf

Kirkpatrick, J., & Fazio, P. (2010). Wild Horses as Native North American Wildlife. Retrieved from https://awionline.org/content/wild-horses-native-north-american-wildlife

Masters, B. (2017). Can fertility control keep wild horse herds in check? National Geographic Society. Retrieved from    https://www.nationalgeographic.com/adventure/features/environment/wild-horses-part-three/

National Horse & Burro Rangeland Management Coalition. (2016). Horse and burros: overview. 1-14. Retrieved from http://www.wildhorserange.org/uploads/2/6/0/7/26070410/nhbrmc_combinedfactsheets-may.16.pdf

National Oceanic and Atmospheric Administration [NOAA]. (2010). What is an invasive species? National Department of Commerce. Retrieved from https://oceanservice.noaa.gov/facts/invasive.html

National Park Services. (2013). Assateague island seashore resource management brief. U.S Department of the Interior. 1-2. Retrieved from https://www.nps.gov/asis/planyourvisit/upload/Horse-Brief.pdf

National Wild Horse and Burro Program. (1971). The wild free-roaming horses and burros act of 1971. Bureau of Land Management. Retrieved from https://www.wildhorseandburro.blm.gov/92-195.htm

Philipps, D. (2014). As wild horses overrun the west, ranchers fear land will be gobbled up. New York Times. Retrieved from https://www.nytimes.com/2014/10/01/us/as-wild-horses-overrun-the-west-ranchers-fear-land-will-be-gobbled-up.html

Pimentel, D., Lach, L., Zuniga, R., & Morrison, D. (2000). Environmental and Economic Costs of Nonindigenous Species in the United States. BioScience, 50, 53-65. Doi: https://doi.org/10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2

Raggatt, M. (2013). Annual roo cull costs $182 a head. The Canberra Times. Retrieved from http://www.canberratimes.com.au/act-news/annual-roo-cull-costs-182-a-head-20131115-2xmw9.html

Ransom, J. I., Powers, J. G., Garbe, H. M., Oehler, M. W., Nett, T. M., & Baker, D. L. (2014). Behavior of feral horses in response to culling and GnRH immunocontraception. Applied Animal Behavior Science, 157, 81-92. Doi: //doi.org/10.1016/j.applanim.2014.05.002

St. George News. (2016). Rep. Stewart’s provisions for Utah make it into spending bill. Retrieved from https://www.stgeorgeutah.com/news/archive/2016/07/16/rep-stewarts-provisions-for-utah-make-it-into-spending-bill/#.WiQ55rQ-fox

Sosnowski, J. (2013). Overview of laws governing kangaroo culling in Australia. Michigan State University College of Law. Retrieved from https://www.animallaw.info/article/overview-laws-governing-kangaroo-culling-australia-0

Turner, J. W. (2015). Environmental influences on movements and distribution of a wild horse ( equus caballus ) population in western nevada, USA: A 25-year study. Journal of Natural History, 49(39), 2437-2464. doi:10.1080/00222933.2015.1024778

Queensland Government (2016). Impacts of erosion. Retrieved from https://www.qld.gov.au/environment/land/soil/erosion/impacts

Vincent, Carol H., Hanson, Laura A., Argueta, Carla N. (2017). Federal land ownership: overview and data. Congressional Research Service, 1-25. Retrieved from https://fas.org/sgp/crs/misc/R42346.pdf

Zalba, S. M., & Loydi, A. (2014). The influence of feral horses dung piles on surrounding vegetation. Management of Biological Invasions, 5(1), 73-79. doi:10.3391/mbi.2014.5.1.07

Fish farms won’t let native populations off the hook

 

Atlantic Salmon in Kuterra’s on-land fish farm

In late August 2017, a fish farm owned by Cooke Aquaculture allowed more than 300,000 non-native Atlantic salmon escape into the Puget Sound of the Pacific Ocean off the coast of Washington state. Several days passed before a salvage team was hired. The main goal of the salvage team is to create a rapid-response center and encourage recreational fishers to catch as many salmon as possible. Earlier that year, Cooke submitted an application for “replacement and reorientation” of the facility to replace or repair the old-fashion steel cages the previous company had used prior to Cooke buying them out in 2016. The application stated that the system was “nearing the end of serviceable life,” and that repairs were needed in September, after the August salmon harvest (Kim E.T., 2017, para.5). A month before the collapse, Cooke had to complete an emergency repair to stabilize the crumbling facility. The emergency repair was to add extra anchors to the site because old ones had come loose and the site drifted away. Despite these concerns, state and federal agencies were not overly worried and figured the farm would remain stable until September and therefore did not ask them to replace the farm ahead of schedule (Kim E.T., 2017). After the escape incident in August, only about 146,000 of the 300,0000 escaped fish were recaptured (Kim E.T., 2017, para.1). Therefore, more than half of the escaped Atlantic salmon were released into the Pacific Ocean. Typically, Atlantic salmon are known to be more aggressive than Pacific salmon and some of the escaped salmon swam upstream towards spawning areas (Alaska Department of Fish and Game [ADFG], 2017; Kim E.T., 2017). Farmed Atlantic salmon can be identified through a mark left on their ear bone by Cooke aquaculture, and have been identified as far north as Fraser River in British Columbia (Mapes, 2017). Even after losing over 300,000 Atlantic salmon in August, Cooke aquaculture at Puget Sound was granted a permit in October to have one million more Atlantic salmon added to their farm. The only requirement for this permit was that the fish moving from the hatchery to the outside pens carry no disease. Their operation was granted the permit even though their prior escape is still under investigation (Mapes, 2017). Cooke’s main argument for the permit was that they had hatched salmon in their hatcheries and it was biologically time for them to move into the water. This is understandable due to rising demand of fish for consumption over the past few years.

 

In fact, the seafood industry has grown so much that industrial fishing can no longer support the demands of consumers resulting in the overfishing of oceans (Food and Agriculture Organization [FAO], 2011;World Wildlife Fund [WWF], 2017). Overfishing occurs when so many fish are being captured from the ocean that the species cannot reproductively keep up (WWF, 2017). In 2012, about 21% of fish stocks were considered overfished (National Oceanic and Atmospheric Administration [NOAA] Fisheries, 2013, Table 1).

Just like farms on land that produce cows, chickens and pigs for consumption, fish farms are continuing to pop up in our local waters and are solving the problem of overfishing native populations. Aquaculture, the operation of raising fish commercially, supplies more than 50% of seafood produced for consumption, a number that will continue to rise (NOAA Fisheries, 2017-a, para.7). A report from NOAA fisheries illustrated that in 2015, the fish industry generated $208 billion dollars in sales and supported 1.6 million jobs across the United States (NOAA Fisheries, 2017-b, para. 6). In 2016, fish farms aided in bringing the previous 21% of overfished stocks down to 16% (NOAA Fisheries 2016, Table 2). By farming species that were once overfished, aquaculture facilities allow endangered populations to regenerate themselves (NOAA Fisheries, 2016). While the farmed fish industry continues to grow and reduces overfishing, it consequently poses significant risk to surrounding ecosystems when farmed fish escape and introduce parasites, compete for resources, and interbreed with native species. Between 1996 and 2012 close to 26 million fish were released from aquaculture facilities worldwide, that’s an average of about 1.5 million per year, and that’s just reported escapes (Center for Food Safety [CFS], 2012, Table 1). Fish escapes are common all around the world. For example, in Scotland, The Scottish Salmon Company reported that 300,000 Atlantic salmon escaped on May 21, 2017 (Scotland’s Aquaculture, 2017, pg. 2). The escape was said to be caused by the weather. Similarly, another Scottish company, Scottish Sea Farms ltd., reported that a predator caused 17,398 Atlantic salmon to escape from their farm on March 25, 2017 (Scotland’s Aquaculture, 2017, pg. 1). Furthermore, in 2010, 138,000 salmon escaped from pens in Grand Manan Canada from Admiral Fish Farm ltd. (Canadian Press, 2011, para. 2). President of the company, Glen Brown said that the breach was due to storms that prevented repair for more than four days (Canadian Press, 2011, para. 4). This escape could have been prevented if the regulations in place were upheld and state and national officials mandated the pens were fixed prior to the escape. The regulations in place currently are insufficient, and should be revised to prevent bigger and more detrimental escapes from occurring in the future. So, how can we continue to produce farmed fish while limiting the harmful effects of escape on the ecosystem? By improving legislative requirements on fish farms and increasing the number of on-land aquaculture facilities, the ecosystem will be better protected from escaped fish and the parasites, competition, and gene transmission they produce.

When the spawn of wild salmon hatch, they leave the spawning area and do not return until maturity is reached at around two years of age (Martyal, 2010). In the Broughton Archipelago of Western Canada, from 2001 to 2002, the population of expected spawn to return to the spawning area declined by 97% (Martyal, 2010, para. 2). When the population was examined, 90% of the juvenile wild salmon had contracted sea lice (Martyal, 2010, para. 2). 

Sea lice are parasites that feed on bodies of fish leaving open wounds that are susceptible to disease (Farmed and Dangerous, n.d.). Farmed fish are prone to getting sea lice due to being held in crowded cages, which is an ideal breeding area for lice. Juvenile salmon are most susceptible to getting sea lice since their scales have not fully developed, therefore it is easier for the lice to attach and eat away at their flesh (Farmed and Dangerous, n.d). In 2004, all the fish farms in the Broughton Archipelago area were found to have 29.5 million sea lice (Martyal, 2010, para. 6). When wild juveniles come in contact with infected farmed salmon on their two year journey before returning the the spawning area. This is because most fish farms are found in sheltered water areas along wild salmon migration routes (Farmed and Dangerous, n.d.). The juveniles must make it through 50 miles of fish farms before reaching open water (SeaWeb, 2007). Fishery ecologist from the University of Alberta, Martin Krkosek estimates that sea lice kills more than 80% of the salmon expected to return to their spawning sites (SeaWeb, 2007, para. 1). Additionally, Director of the Salmon Coast Field Station, Alexandra Morton addresses that the juvenile salmon from Broughton must be introduced to sea lice through farmed fish because the parents of the juveniles that carry the parasite are too far offshore (SeaWeb, 2007). Morton also confirms the idea that juveniles are too weak to survive sea lice infections (SeaWeb, 2007). Therefore, it is more than likely that the juvenile salmon are contracting sea lice from nearby escaped farmed fish.

One of the more prevalent issues that arises once large amounts of fish escape from aquaculture pens is competition between wild populations and farm-bred populations. Using salmon as a model organism, we can look further into the issues that arise when aquaculture-bred fish begin to interact with ecosystems originally inhabited by natural, wild fish stock.

First and foremost, dietary competition poses a huge threat of starving out endemic populations of salmon once their farm-bred counterparts emigrate to their habitats. Since the domesticated salmon and wild salmon share the same diet, the arrival of additional organisms to an ecosystem gives rise to the threat of surpassing the carrying capacity of said ecosystem and putting both farmed and wild fish at risk of starvation due to resource depletion (Naylor et al., 2005).

This risk is compounded even further by the nature of farm-bred salmon. Since aquaculture farms select for larger, meat-rich fish, farm-bred salmon have selection pressures in their favor (Bajak et al., 2016). Displaying more aggressive behavior, coupled with their larger biomass, farmed salmon are able to exhibit more fitness in acquiring food than their wild cousins, threatening the natural balance of a fragile ecosystem and causing complete ecological collapse (Naylor et al., 2005; Glover et al., 2016). With roughly 40% of salmon caught off the coast of the Faroe Islands being of farmed origin, the true implications of this new-found competition are only beginning to unfold (Naylor et al., 2005, pg. 427).

Not only do farmed salmon pose a risk of starving out wild salmonids, but they also display invasive behaviors in regards to nesting and foraging grounds, displacing native fish stock to more predated waters, potentially with very little resources (Toledo-Guedes et al., 2014).  A study by Van Zwol and associates found data showing that the David’s score (a metric of ecological dominance determined by behavioral analysis) of native salmon dropped when invasive species were introduced to their habitat. This directly resulted in reduced food consumption in the native stock by 40% (Van Zwol et al., 2012, fig. 1). The rise of feral populations of farmed salmonids and the subsequent competition between them and wild stock is a growing concern among ocean ecologists, and is directly tied to decreases in wild salmon population by as much as 50% in recent years (Naylor et al., 2005; Castle, 2017, para. 5).

Similarly, farmed fish can introduce new genes to a native population. When escaped fish mate with their native cousins, populations overtime start to show genetic similarities. Nearly half of the wild salmon population in Norway share about 40% of the gene pool of nearby farmed salmon , showing that the blurring of lines between these two distinct populations is already beginning to unfold (Bajak et al., 2016, para. 3). This may seem harmless, but these traits that are being passed from farmed to wild salmon are not desirable in an open ocean setting. Typically, farmed salmon have a lower fitness and survival rate than wild salmon because they are so used to having their survival needs provided for them by farmers. In this area of weak natural selection, and breeding efforts focused solely on production purposes, domesticated salmon with genetically inherited aggressive behavior put them at increased risk of predation. The same traits that allow farm bred salmon to dietarily out compete wild stock puts them in more danger of being killed by predators (Roberge et al., 2008). When traits are passed on to the hybrid population, they are not as successful as their wild parent and have a greater potential of death. According to the Norwegian Institute of Nature Research and the United Nations Food and Agriculture Organization, by interbreeding native and farmed fish species over two generations there is a significant decline in success, fitness and overall population size (Bajak et al., 2016). A study conducted by Roberge and colleagues, confirms these findings . Roberge compared the level of gene transcription within the genomes of wild and second generation hybrids of wild and farmed salmon. It was found that over 6% of genes had significantly different transcription levels than the first generation cross between the native and farmed population (Roberge et al., 2008, pg. 314). If detrimental genes are propelled into expression by this shock to the genetic system of wild salmon, or if normally functioning genes are overexpressed, the overall fitness of the wild population could exponentially decline. Dr. Christian Roberge, an expert researcher in the field of the effects of salmon hybridization at Laval University claims that this is a serious cause for concern in coming years, as it can lead to population collapse when combined with the other issues highlighted in this paper (Roberge et al., 2008).

Further compounding the damaging effects of interbreeding, the triploidy of hybrid salmon has the potential to majorly contribute to population collapse. Much like mules, horse-donkey hybrids, hybrid salmon possess three sets of chromosomes in comparison to a regular organism’s two, rendering them incapable of reproduction (Fjelldall et al., 2014). Therefore, if a large amount of triploid hybrid salmon are present in a population, mass die offs and subsequent population decreases are inevitable, as the population has no means of sustaining itself if it cannot reproduce at a rate faster than it dies off.

By gene transmission between wild and farmed populations, and the proliferation of triploidy, the overall survival rate for fish in wild ocean environments are declining and causing a deleterious effect on the ecosystem. A successful ecosystem needs high survival rates for it organisms by ensuring specific health needs are met. As Dr. Roberge highlighted in his analysis of the genetic transcription differences between native and farmed salmon, these issues will only compound with time, and can quickly get out of control if we do not do anything to rectify them.

Aquaculture is a complicated system that falls under the jurisdiction of the Environmental Protection Agency along with several other state and federal agencies in the United States (Centers for Epidemiology & Animal Health, 1995). The EPA sets effluent limitation guidelines (ELGs), which restrict the allowable amount of pollution that large Concentrated Animal Production Facilities (CAAP) can produce (Harvard Law School et al., 2012). By the Clean Water Act (CWA) definition, any CAAP that has a “discernible, confined and discrete conveyance… from which pollutants are or may be discharged” is termed a point source polluter (Harvard Law School et al., 2012). The CWA is regulated under the EPA (Harvard Law School et al., 2012).Through the EPA aquaculture facilities are regulated as point source polluters if they produce more than 20,000 (cold water facilities) or 100,000 (warm water facilities) pounds of fish per year and use 5,000 pounds or more of feed per month for at least 30 days per year (Harvard Law School et al., 2012). However, ELGs do not apply to CAAPs that do not fall below these requirements and are instead governed by the National Pollutant Discharge Elimination System (NPDES) (Harvard Law School et al., 2012). Under the NPDES these facilities are required to obtain a permit with specific effluent limitations based off the judgement of the individual writing the permit (Harvard Law School et al., 2012). Therefore, there are no strict guidelines, just the permit writer’s assessment. ELGs can have both numeric and narrative limitations but do not require one or the other (Harvard Law School et al., 2012). While for larger CAAPs, ELGs help regulate the limitation of food input necessary for production, the proper storage of drugs and pesticides, and routine inspections, they do not explicitly address fish escape as a problem (Harvard Law School et al., 2012).

While there are massive ecological consequences to fish escape, the most direct and immediate effect felt by people is the economic damage caused by lost fish. Across six European nations (United Kingdom, Norway, Malta, Ireland, Spain and Greece) over a three year period, 8,922,863 fish escaped in 242 incidents, with over five million of those occurring during two catastrophic events. This accounts for a €47.5 million loss per year, or $56,391,050 (Jackson et al., 2015 , pg. 22). This cost alone is incentive for increased regulations, as solving the fish escape problem would mean cheaper fish for consumers and more profits for the farmers.

Many detractors of legislation would claim that it’s impossible to impose legislation into the mix of a low-profitability production environment such as fisheries. Increasing profitability and employment in the industry all while increasing protection to the environment can seem unattainable, but these are exactly the regulatory goals Norway has adopted in regards to its massive fisheries industry. Despite being the 118th largest country by population, Norway is the world’s 10th largest producer of fish (Årland, & Bjørndal, 2002, pg. 309). By instituting annual quotas for total allowable catches for various species, as well as freezing and sometimes even cutting allowable production in at-risk areas for pathogen transmission, Norway has effectively been able to manage stock populations and detriment to the environment effectively (Castle, 2017). Between 2006 and 2010, fish escapes in Norway decreased precipitously from 290,000 to just 70,000, an over 400% decrease (CFS, 2012, Table 1). This is concrete evidence of the feasibility and efficacy of regulations in the aquaculture industry, and legislators would be wise to follow Norway’s highly successful path.

Cooke aquaculture at Puget Sound is currently under investigation because the Wild Fish Conservancy (WFC) has filed a citizen suit against them under the CWA (Schuitemaker, 2017). The CWA monitors the water quality impacts of aquaculture and any pollutants that are released into the water without a permit (Harvard Law School et al., 2012). The WFC maintains that Cooke should be held accountable because living organisms, like fish that are released into the water, are considered pollutants (Harvard Law School et al., 2012). If the set ELGs for large fish farms do not directly include protection against fish escape and continue to group escaped fish as a pollutant, why would individual perimeters for smaller farms consider it?

Regulations by the EPA should be expanded to include all size farms, and should acknowledge escaped fish separately from other pollutants. Additionally, new and existing regulations should be enforced and recorded more consistently to ensure that new aquaculture facilities are not constantly reinventing the wheel, and can obtain knowledge on running an environmentally and economically conscious facilities (Harvard Law School et al., 2012). If facilities are forced to limit the concentration of fish within a pen, less fish will escape into the open water, should an escape occur. If strict enough regulations, punishments and fines are implemented, few farms could skirt the responsibilities involved with running an ecologically sustainable aquaculture facility and maintain economic feasibility (Thorvaldsen et al., 2015).

Facilities should regularly be inspected by their operating company and the EPA to ensure fish pens are secure and can endure regular weather, tide, and ocean variabilities in the area (Fisheries and Oceans Canada, 2017). Increased inspections would limit the amount of equipment becoming dilapidated to prevent future escapes, like the one that occurred at Cooke aquaculture.

Even if no reprimanding action is taken or required of facilities, all incidents of escape should be recorded and investigated to prevent future incidents from occurring and to be used as guidelines for other facilities so they can avoid making the same errors (Fisheries and Oceans Canada, 2017; Harvard Law School et al., 2012; Scotland, 2017). A list of all escape incidences should be created and updated yearly to ensure an accurate number of escapees is gathered (Scotland, 2017; Fisheries and Oceans Canada, 2017).

While instituting new legislation is a viable solution to preventing environmental issues in regards to fish farms, the costs associated with implementing and enforcing regular inspections, water quality tests, and regulating farm sizes and outputs are considerable and discourage new players from entering the aquaculture industry (McCarthy and River, 2002). Stringent enforcement of these regulations is also absolutely necessary, as many companies simply skirt regulations when they lack oversight due to operational complications, lack of operator education, tight schedules and efficiency initiatives (Thorvaldsen et al., 2015).

In addition to increasing regulation, creating more on-land fish farm facilities will eliminate escape occurrences, and significantly decrease the environmental impacts fish farms have on open water ecosystems (O’Neill, 2017). When possible, moving fish farms to facilities on land could be the solution to preventing fish escape and the myriad of environmental issues mentioned previously that facilities produce in open water environments (Aukner, 2017). This solution readily applies to the majority of fish species, as moving to on-land facilities is a viable and more sustainable option, but for the majority of shellfish, like clams, oysters, and scallops farming in open water can be more beneficial to the environment than destructive by because these species can remove biotoxins, chemical contaminants, and pathogenic microorganisms during their natural process of filtering water for food and other resources (Connecticut Department of Agriculture, 2017). Kuterra, a land based aquaculture facility has had great success in starting an on-land fish farm, and releases documents containing information on the costs associated with on-land fish farming, guides to operating on-land facilities, and the benefits of farming on-land which are valuable to other companies interested in opening facilities (Kuterra, 2014). With the support of multiple national and international companies, their hope and mission is that more farms will open or move on shore in the future and by providing resources future companies can avoid costly trial and error processes (Kuterra, 2014). Several farmed species are marine fish, and therefore require access to saltwater, so on- land facilities are limited by location, needing to stay within several kilometers from a saltwater source in order to operate (Kuterra, 2014).

In order to create a sustainable and economically productive aquaculture industry going  forward, regulations must be changed to accommodate greater operational aspects of fish farms. This industry could and should be reshaped to prevent further degradation of the environment without sacrificing economic capacity. Additionally, innovations, such as on-land fish farms, must continue to be proposed and investigated for feasibility and efficacy. The future of mankind’s fisheries is at stake, and pivotal action must be taken to ensure the safety of our seafood supplies. We strongly advise following the advice of the wealth of experts cited in this paper, and implement strict regulations in the vein of Norway’s that regulate density of fish in net pens, total annual production limits and scalebacks, and fines for noncompliance.

AUTHORS

Eleah Caseau, Environmental Science

Jenna Costa, Animal Science, Biotechnology Research

Trevor Klock, Plant and Soil Science

 

REFERENCES

Alaska Department of Fish and Game (2017). Invasive Species — Atlantic Salmon (Salmo salar) Impacts. Retrieved from http://www.adfg.alaska.gov/index.cfm?adfg=invasiveprofiles.atlanticsalmon_impacts

Årland, K., & Bjørndal, T. (2002). Fisheries management in norway—an overview. Marine Policy, 26(4), 307-313. doi://doi.org/10.1016/S0308-597X(02)00013-1

Bajak, A., Simms, E. L., McDowell, C., Graham, W., & Petit, C. (2016). Into the Wild: When Farmed Salmon Interbreed With Their Wild Cousins. Retrieved from https://undark.org/2016/08/12/muddy-waters-happens-farmed-salmon-go-wild/

The Canadian Press. (2011). 138,000 Farmed Salmon Escape into Bay of Fundy. Retrieved from http://www.ctvnews.ca/138-000-farmed-salmon-escape-into-bay-of-fundy-1.593713

Castle, Stephen. (2017). As Wild Salmon Decline, Norway Pressures Its Giant Fish Farms. New York Times. Retrieved from https://www.nytimes.com/2017/11/06/world/europe/salmon-norway-fish-farms.html

Centers for Epidemiology & Animal Health (1995).Overview of aquaculture in the United States. United States Department of Agriculture: Animal and Plant Health Inspection Service. Retrieved from https://www.aphis.usda.gov/animal_health/nahms/aquaculture/downloads/AquacultureOverview95.pdf

Center for Food Safety. (2012). Reported escapes from fish farms. Retrieved from https://www.centerforfoodsafety.org/files/fish-escapes-chart_14767.pdf

Connecticut Department of Agriculture. (2017). Environmental benefits of shellfish aquaculture. Retrieved from http://www.ct.gov/doag/cwp/view.asp?a=1367&q=478090

Farmed and Dangerous. (n.d.). Sea Lice. Retrieved December 04, 2017, from http://www.farmedanddangerous.org/salmon-farming-problems/environmental-impacts/sea-lice/

Fisheries and Oceans Canada. (2017). Escape Prevention. Government of Canada. Retrieved from http://www.dfo-mpo.gc.ca/aquaculture/protect-protege/escape-prevention-evasions-eng.html

Fjelldal, P. G., Wennevik, V., Fleming, I. A., Hansen, T., & Glover, K. A. (2014). Triploid (sterile) farmed atlantic salmon males attempt to spawn with wild females. Aquaculture Environ Interact, 5 doi:10.3354/aei00102

Food and Agriculture Organization of the United States. (2011). Fish Consumption reaches all-time high. Retrieved from http://www.fao.org/news/story/en/item/50260/icode/

Glover. K.A., Bos, J.B., Urdal, K., Madhun, A.S., Sørvik, A.G. E., Unneland, L., … Wennevik, V. (2016). Genetic screening of farmed Atlantic salmon escapees demonstrates that triploid fish display reduced migration to freshwater. Biological Invasions 18. 1287-1294, doi: 10.1007/s10530-016-1066-9.x

Harvard Law School Emmett Environmental Law & Policy Clinic, Environmental Law Institute, & The Ocean Foundation. (2012). Offshore Aquaculture Regulation Under the

Clean Water Act. Retrieved from http://eli-ocean.org/wp-content/blogs.dir/3/files/CWA-aquaculture.pdf

Jackson, D., Drumm, A., McEvoy, S., Jensen, Ø, Mendiola, D., Gabiña, G., . . . Black, K. D. (2015). A pan-european valuation of the extent, causes and cost of escape events from sea cage fish farming. Aquaculture, 436, 21-26. doi://doi.org/10.1016/j.aquaculture.2014.10.040

Kim, E. T. (2017). Washington State’s Great Salmon Spill and the Environmental Perils of Fish Farming. Retrieved from https://www.newyorker.com/tech/elements/washington-states-great-salmon-spill-and-the-environmental-perils-of-fish-farming

Kuterra Limited Partnership. (2014). Our Story. Retrieved from http://www.kuterra.com/our-story/

Mapes, L. V. (2017). State approves 1 million more farmed fish for Puget Sound, despite escape. Retrieved from https://www.seattletimes.com/seattle-news/environment/state-approves-1-million-more-farmed-fish-for-puget-sound-despite-escape/

Martya1, G. D., & Saksidab, A. S. (2010). Gary D. Marty. Retrieved December 04, 2017, from http://www.pnas.org/content/107/52/22599.full

McCarthy, T., & River, C. (2002). Is fish farming safe? Time Magazine. Retrieved from http://content.time.com/time/magazine/article/0,9171,391523-3,00.html

Naylor, R., Hindar, K., & Fleming, I.A. (2005). Fugitive Salmon: Assessing the Risks of Escaped Fish from Net-Pen Aquaculture. Bioscience 55.5. 427-37, https://doi.org/10.1641/0006-3568(2005)055[0427:FSATRO]2.0.CO;2.

National Oceanic and Atmospheric Administration Fisheries. (2017-a). Basic Questions about Aquaculture: Office of Aquaculture. Retrieved from http://www.nmfs.noaa.gov/aquaculture/faqs/faq_aq_101.html

National Oceanic and Atmospheric Administration Fisheries. (2017-b). NOAA Fisheries Releases Fisheries Economics of the U.S. and Status of Stocks Reports. Retrieved from http://www.nmfs.noaa.gov/stories/2017/04/05_feus_sos_reports.html

National Oceanic and Atmospheric Administration Fisheries. (2016). Status of stocks 2016. Retrieved from http://www.nmfs.noaa.gov/sfa/fisheries_eco/status_of_fisheries/archive/2016/status-of-stocks-2016-web.pdf

National Oceanic and Atmospheric Administration Fisheries (2013). Status of Stocks 2012. Retrieved from http://www.nmfs.noaa.gov/stories/2013/05/05_02_13status_of_stocks_2012.html

O’Neill, E. (2017). In the future, we might farm fish on land instead of in the sea. KCTS9. Retrieved from https://kcts9.org/programs/earthfix/in-future-we-might-farm-fish-land-instead-in-sea

Roberge, C., Normandeau, E., Einum, S., Guderley, H., & Bernatchez, L. (2008). Genetic consequences of interbreeding between farmed and wild atlantic salmon: insights from the transcriptome. Molecular Ecology 17(1). 314-24, DOI: 10.1111/j.1365-294X.2007.03438.x

SeaWeb. (2007). Fish Farms Drive Wild Salmon Populations Toward Extinction. Retrieved from https://www.sciencedaily.com/releases/2007/12/071213152606.htm

Schuitemaker, L. (2017). Lawsuits filed over Cooke Puget Sound salmon escape. Retrieved from http://salmonbusiness.com/lawsuits-filed-over-cooke-puget-sound-salmon-escape/

Scotland’s Aquaculture. (2017). Fish Escape. Retrieved from http://aquaculture.scotland.gov.uk/data/fish_escapes.aspx

Thorvaldsen, T., Holmen, I. M., & Moe, H. K. (2015). The escape of fish from norwegian fish farms: Causes, risks and the influence of organisational aspects. Marine Policy, 55. 33-38. http://dx.doi.org/10.1016/j.marpol.2015.01.008

Toledo-Guedes, K., Sanches-Jerez, P. & Brito, A. (2014). Influence of a massive aquaculture escape event on artisanal fisheries. Fisheries Management of Ecology 21. 113-121, doi: 10.1111/fme.12059

Van Zwol, J., et al. (2012). The effect of competition among three salmonidson dominance and growth during the juvenilelife stage. Retrieved December 05, 2017, from http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0633.2012.00573.x/epdf

 

World Wildlife Fund (2017). “Overfishing.” WWF, World Wildlife Fund. Retrieved from www.worldwildlife.org/threats/overfishing.

Fighting Fire with Fire: Effective Fuel Reduction Treatments Preventing Severe Wildfires

 

Northern California residents are used to dealing with large-scale wildfires erupting near and within their hometowns. However, this past October saw dozens of extreme wildfires simultaneously sweeping across Napa, Sonoma, and Solano counties (Holthaus, E., 2017). Soon after these eruptions, thousands of people were forced to evacuate their homes, 1,500 structures had been destroyed, and eleven people were reported dead. Governor Jerry Brown promptly declared California in a state of emergency making the National Guard available. After one week, one of these fires named the Tubbs Fire, became California’s most destructive wildfire in history, taking 21 lives and destroying 5,643 structures (The California Department of Forestry and Fire Protection [CALFIRE], 2017). Thousands of wildland firefighters worked day and night attempting to contain this fire, only receiving on average three hours of sleep a night (Westervelt, 2017). Ultimately the wildfires were uncontrollable, subsequently destroying thousands of wineries significantly hitting local economies. California Lt. Gov. Gavin Newsom stated that enormous fires interfacing with high population areas is unfortunately the new norm. Just this year, California fires have burned twice as many acres than 2016, and the average amount burned over the past five years (CALFIRE, 2016).

Contrary to popular belief, low severity and frequent wildfires that occur every 1-25 years are key to perpetuating healthy stands of certain forest types, especially in the western U.S (Pacific Northwest Research Station, 2015). Just one hundred years ago, the Northwestern forests contained many gaps in their canopies, and their understories were not very dense (Hessburg et al, 2005, p. 117).  Low severity fires sculpted these forests by keeping the buildup of vegetation at bay which created breaks in continuous fuel, also known as combustible vegetation (Washington, G.W). Breaks in fuel deter mega fires from spreading across the landscape (Hessburg et al, 2005, p. 132). Fire is imperative to forested ecosystems of the Pacific Northwest because it not only reduces stand density and accumulation of vegetation, but there are many ecological benefits such as nutrient recycling, reproduction, and germination, (Hessburg et al, 2005, p. 118).

Approximately a century ago, the U.S. Forest Service (USFS) began putting these important fires out leading to a plethora of excessively dense stands with continuous, built-up fuels (Stephens et al., 2012., p. 549). The USFS were allotted money from an emergency fund allowing them to fight fires without chewing into their own budget (Houtman et al, 2013, p.A) During this century, the West entered a period of intensive logging where the largest trees were repeatedly cut, and many small trees all filled the gaps left behind simultaneously, cutting system called highgrading (Hessburg et al, 2005, p.120; p. 122). Years of fire suppression plus highgrading has transformed the forested landscapes of the Pacific Northwest to be now overly stocked stands, or groups of trees with uniform characteristics, of similar age (Snyder, M., 2014).

Wildfires in the US have been strongly affected by all aspects of global climate change. Climate change has altered current atmospheric patterns especially average air temperatures significantly impacting fire regimes (Huang et al, 2015, p. 89). Warming means that regions will experience drier than normal conditions conducive to extreme fire outbreaks (Harvey, C., 2017). The amount of moisture in vegetation decreases under warmer conditions because of a decrease in relative humidity, and an increase in evapotranspiration rates, or the process in which water is transferred from the land and foliage to atmosphere through evaporation (Huang et al, 2015, p. 89). Wildfires feed off dry fuels because fuels with lower moisture levels take less time to burn, therefore making wildfire behavior more erratic and unpredictable (Flannigan et al, 2009, p. 492) Studies show that in response to drier climatic conditions, the frequency of large fires in the Northwestern US has increased by 1000% since 1970 (Schoennagel et al, 2017, p. 4538) Warming also increases fire severity in being a sharp increase in the amount of area burned in  future predicted fires. In fact, this year alone has seen approximately a 23% increase of acres burned nationally compared to the average amount from 2006-2016 (National Interagency Fire Center [NIFC], 2017).

Not only do extreme wildfires kill off enormous amounts of trees, they also destroy thousands of homes and structures annually. Since 2011, there has been eleven wildfire outbreaks each causing at least one billion dollars in damages (Center for Climate and Energy Solutions, 2011). This October, over 20,000 citizens were evacuated from Santa Rosa California and the neighboring communities to flee from the devastating flames that destroyed everything in their path (Fuller et al, 2017, October 10). Due to past land use history coupling climate change, management through prescribed burning must be implemented at a fast rate to reduce the accumulation of dry fuels, or this megafire trend will only continue to worsen.

One of the most common means of managing forest fires as mentioned before is through prescribed burning. This is where a section of the forest, typically the understory, is purposely ignited to allow for the reduction of fuel to ultimately decrease the size, severity, and frequency of wildfires. (United States Geological Survey, 1999). This is usually done by small federal or state-level ground crews that are trained to maintain control of the fire. This form of management may not work on all landscapes, however it is a proven method in reducing fuel loads effectively.

On the coast of Southern Alabama, multiple prescribed burns were administered every 2-3 years in a Longleaf Pine dominated forest (Outcalt & Brockway, 2010, p. 1615). After eight years, the resulting forest structure and composition consisted of an open Longleaf Pine dominated overstory with a reduction in a woody understory and increase in an herbaceous layer (Outcalt & Brockway, 2010, p. 1622). This description is an ideal Longleaf Pine ecosystem because the build-up of a woody and dense understory heavily increases severe wildfire risk.

Much of the public is concerned about prescribed burning due to a lack of understanding. Some people fear of the chance prescribed burns might go awry and become impossible to contain. However, during the period of 2002-2006, the USFS could not contain 38 out of 3,640 controlled burns performed, which is a 99% success rate (Deirdre, D & Black, A., 2006). Considering how damaging wildfires can be, the chance of a prescribed burn becoming uncontrollable and destructive is quite negligible.

Due to negative opinions regarding prescribed burning and political constraints, there has not be and is not nearly enough prescribed burning being conducted throughout the U.S., especially on Pacific Northwestern national and state forests. After thirteen years, the USFS did prescribed burning on only 4.7% of Oregon’s 15.7 million acres of national forests and administered an even slimmer 1.4% of Washington’s 9.3 million acres (Brunner, J & Bernton, H., 2015, October 20). When broken down by region, of the 11.7 million acres burned using prescribed burning in 2014, the Southeast burned 8 million acres, 69% of the total amount performed throughout the U.S. When compared with western agencies, they only performed 27% of the total acres burned (Coalition of Prescribed Fire Councils, Inc., 2015).

With the expansive amount of information covering the effectiveness of prescribed burning, the question remains why the West is conducting significantly less prescribed burning than the South. Part of the reason lies in fire being an accepted component of southern culture, in fact many southern laws support prescribed burning being done on private property by private non-commercial practitioners and private contractors (Kobziar et al, 2015, p. 565). There are much stricter laws in some regions of the Pacific Northwest limiting the amount of prescribed burning allowed. For instance, the Clean Air Act requires the EPA to enforce states to mandate certain levels of six common pollutants determined by the National Health-based Ambient Air Quality Standards (Engel K.H., 2013, p. 647). For states implementing significant amounts of prescribed burning, the EPA enforces them to carry out smoke management plans (SMPS) that include ways of minimizing smoke from prescribed burns and topics such as what agency will authorize burn permits (Engel K.H., 2013, p.656).

As mentioned earlier Oregon is conducting more prescribed burning than Washington state; Oregon federal and state agencies burned over 450,000 acres between 2010-2015 while Washington state and forest agencies burned less than 150,000 acres (Banse, T. 2016, February 3). Washington State Senator Linda Evans Parlette told the Northwestern News Network that the answer lies partially in these strict smoke management laws the Washington Department of Natural Resources (DNR) imposes on the agencies and people of Washington. To get a prescribed burning plan approved in the state of Oregon, an agency or forest landowner must submit it to the District of Forestry state forester (Battye et al, 1999, p. 101). In order to get a plan approved in Washington state involved a lot more steps: agencies doing prescribed burns of 100 tons of fuel or more, which an average timber burn exceeds, must submit a permit to the DNR complete with pre-burn data and steps for collecting post-burn data (Battye et al, 1999, p. 141). In addition, the DNR region manager must screen the burn site and review the atmospheric conditions the day before the scheduled burn. Finally, the region manager must provide the final approval the day of the planned burn (Battye et al, 1999, p. 142). A solution to these inflexible smoke management laws that date back to the 90’s is modifying the clauses within each state’s’ SMP to allow for more prescribed burns to occur, especially in the west.

House Bill 2928 is a bill recently passed by Washington State Legislature in March 2016, aiming to make prescribed burning authorization more lenient (House Bill 2928, 2016). In summary, the bill calls for burn plans to be approved 24 hours before the scheduled burn as opposed to the day of. In addition, it reclassifies prescribed burning as “forest resiliency burns” allowing for controlled burns to be conducted on days that regular outdoor fires are prohibited. Finally, the bill states that burn permits can only be revoked by the DNR when the prescribed burn is highly likely to result in heavy air quality violations or other safety issues.

With projected warmer temperatures and less precipitation in the future due to global climate change, wildfires will likely increase in many areas of the country, especially of those in the western United States. However this does not necessarily have to mean that the severity of these wildfires has to increase as significantly as projected. Prescribed burning offers an effective treatment to reduce hazardous fuel loads. Moving towards the future we must increase knowledge of the public and politicians on fire ecology, which is a natural process in many western ecosystems.  We also must pass bills that concentrate around the initiative that fire management, both proactive and active, is needed and will be needed even to a greater extent in the future.  If this does not happen, key funding and initiatives may be lost because costs will only increase with more frequent, high severity wildfires. Fire has always been a part of the Western United States ecology and with the changing climate, precautions must be taken to insure low severity prescribed burns are administered to reduce the likelihood of frequent and severe wildfires looking towards the future.

AUTHORS

Gerald Barnes – Natural Resources Conservation with a Concentration in Wildlife Conservation

Oscar Hanson – Building Construction and Technology

Rebecca Holdowsky – Natural Resources Conservation with a Concentration in Forest Ecology and Conservation

REFERENCES

Banse, T. (2016, February 3). Washington state lawmakers want to fight fire with fire more often. Northwest News Network. Retrieved from http://nwnewsnetwork.org/post/washington-state-lawmakers-want-fight-fire-fire-more-often

Battye, R., Bauer, B., & MacDonald, G. (1999 September).Features of prescribed fire and smoke management rules for Western and Southern states. EC/R Incorporated, 1-156. Retrieved from https://www.wrapair.org//forums/fejf/documents/woodard.pdf

Brunner, J & Bernton, H. (2015, October 20). Fighting fire with fire: State policy hampers use of controlled burns. Seattle Times. Retrieved from https://www.seattletimes.com/seattle-news/environment/fighting-fire-with-fire-state-policy-hampers-use-of-controlled-burns/

The California Department of Forestry and Fire Protection [CALFIRE]. (2017, November 29). Top 20 most destructive california wildfires. Retrieved from http://www.fire.ca.gov/communications/downloads/fact_sheets/Top20_Destruction.pdf

CALFIRE. (2016, September 23). Incident statistics. Retrieved from http://cdfdata.fire.ca.gov/incidents/incidents_stats

Center for Climate and Energy Solutions. (2011). Wildfires and climate change. Retrieved from https://www.c2es.org/content/wildfires-and-climate-change

Coalition of Prescribed Fire Councils, Inc (2015). 2015 NATIONAL PRESCRIBED FIRE USE SURVEY REPORT. Retrieved from http://stateforesters.org/sites/default/files/publication-documents/2015%20Prescribed%20Fire%20Use%20Survey%20Report.pdf

Deirdre, D & Black, A. (2006). Learning from escaped prescribed fires – lessons for high reliability. Retrieved from https://www.fs.fed.us/rm/pubs_other/rmrs_2006_dether_d001.pdf

Engel, K.H. (2013). Perverse incentives: The case of wildfire smoke regulation. Ecology Law Quartely. (40)3, 622-672. Retrieved from http://scholarship.law.berkeley.edu/cgi/viewcontent.cgi?article=2023&context=elq

Ensuring that restrictions on outdoor burning for air quality reasons do not impede measures necessary to ensure forest resilience to catastrophic fires, House Bill 2928. (2016) Retrieved from http://lawfilesext.leg.wa.gov/biennium/2015-16/Pdf/Bill%20Reports/House/2928%20HBR%20AGNR%2016.pdf

Flannigan, M.D., Krawchuk, M.A, de Groot, W.J., Wotton, M.B., & Gowman, L.M. (2009). Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 18(5), 483-507. doi:10.1071/WF0818

Fuller, T., Perez Pena, R., & Bromwich, J.E., (2017, October 10). California fires lay waste to 140,000 acres and rage on. Retrieved from https://www.nytimes.com/2017/10/10/us/california-fires.html?action=click&contentCollection=U.S.&module=RelatedCoverage&region=Marginalia&pgtype=article

Harvey, C. (2017) Here’s what we know about wildfires and climate change. Scientific American. Retrieved from https://www.scientificamerican.com/article/heres-what-we-know-about-wildfires-and-climate-change/

Hessburg, P.F., Agee, J.K., & Franklin, J.F. (2005). Dry forests and wildland fires of the inland Northwest USA: Contrasting the landscape ecology of the pre-settlement and modem eras. Forest Ecology and Management, 211, 117-139. doi: l0.1016/j.foreco.2005.02.0

Holthaus, E. (2017). The firestorm ravaging northern california cities, explained. Retrieved from http://www.motherjones.com/environment/2017/10/the-firestorm-ravaging-northern-california-cities-explained/

Houtman et al (2013). Allowing a wildfire to burn: estimating the effect on future fire suppression costs. International Journal of Wildland Fire. A-L. doi: 10.1071/WF12157

Huang, Y., Wu, S., & Kaplan, J.O (2015). Sensitivity of global wildfire occurrences to various factors in the context of global change. Atmospheric Environment, 121; 86-92; doi: 10.1016/j.atmosenv.2015.06.002

Kobziar, L.N., Goodwin, G., Taylor, Leland., & Watts, A.C. (2015). Perspectives on trends, effectiveness, and impediments to prescribed burning in the Southern U.S. Forests. (6)3, 561-580. doi: 10.3390/f6030561

Outcalt, K.W & Brockway, D.G. (2010). Structure and composition changes following restoration treatments of longleaf pine forests on the Gulf Coastal Plain of Alabama. Forest Ecology and Management, 259, 1615-1623. doi: 10.1016/j.foreco.2010.01.039

Pacific Biodiversity Institute. (2009). Benefits of fire in ecosystems. Retrieved from http://www.pacificbio.org/initiatives/fire/fire_ecology.html

Pacific Northwest Research Station (2015, September 14). Fuel treatments: thinning and prescribed burns. Retrieved from https://www.fs.fed.us/pnw/research/fire/fuel-treatments.shtml

Schoennagel et al, (2017). Adapt to more wildfire in western north american forests as climate changes. Proceedings of the National Academy of Sciences of the United States of America, 114(18), 4582-4590. doi: 10.1073/pnas.1617464114

Stephens et al. (2012). Effects of forest fuel-reduction treatments in the United States. Bioscience, 62, 549-560. Doi: 10.1525/bio.2012.62.6.6

Snyder, M. (2014, July 2). What is a forest stand and why do foresters seem so stuck on them. Retrieved from https://northernwoodlands.org/articles/article/forest-stand

United States Geological Survey. (1999, September 22). USGS studies wildfire ecology in the Western United States. ScienceDaily. Retrieved from www.sciencedaily.com/releases/1999/09/990922050418.htm

Washington, G.W. Fire and fuels management: Fire and fuels management: Definitions, ambiguous terminology and references. Retrieved from https://www.nps.gov/olym/learn/management/upload/fire-wildfire-definitions-2.pdf

Westervelt, E. (2017, October 14). In Northern California, exhausted firefighters push themselves ‘to the limits’. Retrieved from https://www.npr.org/sections/thetwo-way/2017/10/14/557620863/exhausted-firefighters-make-progress-against-northern-california-wildfires?utm_campaign=storyshare&utm_source=facebook.com&utm_medium=social

Micro Irrigation: How to Make Every Drop Count

 

Mike Wissemann is a tenth generation farmer from Sunderland, MA. His farm, Warner Farm, has been an established source of crops for the surrounding towns since 1718. Mr. Wisseman inherited three hundred years of farming techniques and tricks. He spent his high school years working on the family farm and went on to receive a degree in Plant and Soil Science from the University of Massachusetts Amherst. Mr. Wisseman successfully expanded the farm and his crops from potato/onion crop to a wide variety of fruits and vegetables (Schwarzenbach, 2017). However, no amount of experience or education stopped him from losing tens of thousands of dollars when the Northeast experienced one of its worst droughts in decades (Kaufman, 2016). Farmers all over the Northeast were left scrambling to find enough water for their crops–some were even reduced to bucket brigades to get enough water to their acres of farmland (Shea, 2016).

Despite their best efforts, farmers could not plant their second round of crops. Even generally fertile farm areas such as those by rivers had major problems trying to irrigate (Schwarzenbach, 2017). When your entire livelihood depends on a natural resources (such as water), climate change and increasing drought years are a direct danger to your livelihood.

As climate change continues, droughts like the one experienced by Mr. Wissemann, are going to become more common.  Rising temperatures associated with climate change have impacted approximately 80% of monthly heat records (Coumou, Robinson, & Rahmstorf, 2013). As a rule, as temperature increases, the rate at which an organism produces energy increases as well (Hansen, Smith, & Criddle, 1998). This would be beneficial to productivity, if increased temperatures did not have the additional effect of decreasing the amounts of water available in soil. Think about the application of heat to a pot of water; when the water boils, the water escapes the pot in the form of vapor into the air. The same process holds true when heat is applied to the ground; the water escapes the soil in the form of vapor. This process leaves the soil devoid of water for the plants and leads to drought. The U.S. is a top exporter of agricultural goods and climate change is going to have a significant impact on our agriculture (Joint Economic Committee Democratic Staff, 2012). Between 2000 and 2015, 20-70% of the United States experienced abnormally dry conditions each year (Environmental Protection Agency [EPA], 2016). This does not bode well for the agricultural industry as droughts have an intensely negative impact on crops.

Decreased soil moisture means less water is available for the plants. This both leads to water stress and exacerbates heat stress. Water stress is a variety of plant symptoms that negatively affect plant productivity. It also aggravates heat stress which is when a plant suffers significant tissue damage because of high temperatures or high soil temperatures (Hall, 2017). The same way that humans expect to catch a cold from being overly cold or hungry for too long, plants are more susceptible to disease after being dehydrated and overheated for too long. When leaves of corn are subjected to drought-like conditions, they contained 69% more diseased biomass (Vaughan et al., 2016). When a plant is dehydrated, tiny openings in the leaves close to avoid further loss of water through evaporation. When these openings close, the leaf is incapable of expelling oxygen and taking in carbon dioxide–as if the plant is holding its breath (Osakabe, Osakabe, Shinozaki, & Tran, 2014). Increased heat stress and decreased water availability reduces the plant ability to breathe and thus make food. This results in a weakened plant that is more susceptible to disease (Irmak, 2016; Vaughan et al., 2016).

To get a better sense of the effects of combining heat and water stress, these processes can be related to the human body. Heat stress is similar to running; it elevates your heart rate.  If you run forever without rest, you will pass out, and most likely die without medical attention. Water stress, which is like holding your breath, will also eventually kill you, but can be done for some length of time. When heat stress and water stress occur simultaneously, it is like running a marathon while holding your breath. Such a venture would result in near-immediate loss of consciousness, and death without medical attention. Similarly, a plant under both water and heat stress, sees a drastic decrease in productivity, and eventual death without a change in conditions.

We are exceptionally vulnerable to these effects of climate change on our crops due to our current method of water usage. Current estimates reveal that 70% of freshwater withdrawals go towards irrigation uses (Block, 2017) and a large amount of this water could be conserved. A widely accepted, but inefficient method of irrigation is furrow or gravity irrigation. It accounts for 35% to 42% of irrigation systems in the United States (Subbs, 2016). Compared to a more modern technique known as drip irrigation, it wastes 43.6 % of total water use (Tagar et al., 2012,  p. 792). Furrow irrigation involves planting crops in rows with small trenches running in between them. Water is then flown down the trenches that run alongside the crops (Perlman, 2016). Farmers across the nation use furrow irrigation because there are lower initial investment costs as well as a lower cost for pumping water (Yonts, Eisenhauer, & Varner, 2007). Unfortunately, it also wastes a lot of water. The water is not targeted on the roots and much of it goes to wetting soil around the plant and not the actual root. This is inefficient because the roots are the plant structure that absorb the water (Lamont, Orzolek, Harper, Kime, & Jarrett, 2017). The water that is not on the roots is more likely to be lost as soil evaporation which accounts for over 50% water lost in furrow irrigation (Batchelor, Lovell, & Murata, 1996). Traditional forms of irrigation irrigate the entire field, wasting precious water on soil that will not be in contact with the plant’s roots (Lamont et al., 2017).

Plants need fresh water to survive but, unfortunately, water is a finite resource. Although the water covers 70% of the planet, only 2.5% of it is fresh water. This freshwater is “stored” in places like rivers, lakes, ice, and, perhaps most importantly, in the ground. Surface water seeps down through layers of dirt and rock to recharge groundwater storage areas, more commonly known as aquifers. Aquifers are made up of types of rock particles, such as sand and gravel,  that have enough space between them that the water can happily live. We need freshwater for activities ranging from drinking to manufacturing processes to agricultural irrigation. And about 50% of the freshwater we use for these activities is derived from groundwater (Dimick, 2014).  

The main differing factor between groundwater and surface water as a source of fresh water is the time it takes for these reserves to be recharged. Surface waters, such as lakes, can be replenished with seasonal rains. Groundwater on the other hand can take anywhere from months to tens of thousands of years to build up a reserve because the water has to flow through layers and layers of soil and rock to reach the aquifer. It can also be left untouched for long periods of time as it is not susceptible to the same rules of constant evaporation as surface water.

Agriculture has been using up this resource far faster than it can be replaced. It may take years to build up a water reserve, but it only takes seconds to pump it out. For example, the Ogallala Aquifer, which is located under the Great Plains of the United States, recharges at a rate of less than 1 inch per year (Kromm, 2017). However, over the past decade water has been withdrawn at a rate of approximately 18 inches per year. It is estimated that in the next 50 years, 69% of the Ogallala Aquifer will be gone. This depletion of groundwater resources is happening all over the country from the Colorado River Basin to the California Central Valley to the North China Plain to the Middle East (Dimick, 2014).

We cannot fix climate change, however we can mitigate its effects through effective water usage. Using the method of Micro Irrigation also known as drip irrigation, we can conserve water and mitigate the negative effects of water and heat stress on crops. Micro Irrigation involves using pressurized piping that drips water directly on the roots of the plant. It consists of a mainline distribution, sub-mainline (header), drip lines, filters, pressure regulators, and chemical injectors. Laying down an underground network of pipe which has an opening at the base of each plant. Using a pressurizing system to efficiently deliver water directly to the root system of the plant, which is the part that absorbs water (Lamont et al., 2017).

This decreases the water stress on the plants because it ensures that the plants are receiving enough water. Adequate water leads to healthier and more disease resistant crops (Irmak, 2016; Vaughan et al., 2016).

Not only does this method create better living conditions for the plants, it also conserves an incredible amount of water. This will be especially key as water availability decreases with climate change. Drip irrigation improves efficiency of water on farms by reducing the soil evaporation and drainage losses. In terms of conservation, drip irrigation may require less than half the water needed in a sprinkler irrigation method (Lamont et al., 2017). Since the water is applied directly to the roots, no water is wasted on non-productive areas, resulting in even more water efficiency (Lamont et al., 2017). Drip irrigation was much more efficient than furrow irrigation saving 56.4% of the water in comparison. (Tagar et al., 2012,  p. 792).

However, traditional irrigation wastes water in a way that drip irrigation does not. In terms of the framework of increasing water demand with climate change, agricultural methods that recognize water as a valuable, finite resource need to be implemented.  

Furrow Irrigation is cheaper to install initially, but is far more water and energy inefficient compared to drip irrigation. To install, depending on the type of furrow irrigation and the size of the farm, it will be anywhere from $13 to $70 per acre (Wichelns, Houston, Cone, Zhu, Wilen, 1996). There are more repair costs and maintenance costs for this particular type of irrigation and can be anywhere from $13 to $90 annually per acre (Wilchens et al., 1996). While it is cheaper initially, drip irrigation uses water and energy so much more efficiently, that the long term savings of drip irrigation far outweigh the initial cheapness of the furrow irrigation.

Drip Irrigation costs approximately $500- $1,200 per acre, or potentially more, to install (Simonne et al., 2015). For reference, Louisiana Delta Plantation has over 26,000 acres (Honey Brake Lodge, 2017). An acre is about the size of a football field, which would make that farm the size of 26,000 football fields put together. Even at the lowest cost, converting to Drip Irrigation would cost approximately $13 million for the Louisiana Delta Plantation. Even though the initial investment is hard to grasp in terms of magnitude, eventually the system will pay for itself by maintaining crop yields, even in dry years, and lowering energy and water costs (Stauffer, 2010; Lee Engineering, 2017). How much money will be saved and how many years it will take for the new system to pay for itself is largely dependent on the size of the farm and what kind of crop is being grown, therefore, there are not any specific numbers because of the huge variability of farm types and sizes (Stauffer, 2010). In addition, climate change is very difficult to predict precisely enough for long-term cost analysis, and the type of year-to-year predictions necessary to make those calculations are not presently feasible.

Additionally, the drip method is actually shown to increase crop yields by 22%, which itself is motivation for its implementation (Tagar et al., 2012,  p. 792). California almond farmers have seen their crop yields double as they increased their reliance on the micro irrigation system (Block, 2017). Drip irrigation creates better growing conditions by maintaining the correct moisture conditions favorable for crop growth (Batchelor et al., 1996).

However, if the initial investment cost is offset, micro irrigation will save money in the long run. This method of subsidizing the initial cost has been successful in other situations such as in the case of solar panels. An initial investment cost for switching to solar energy can be anywhere between $10,000 and $50,000 (Maehlum, 2014). It would be reduced by thousands of dollars because of the Federal and state tax credits associated with switching to solar power. Eventually, the solar panels will pay for themselves and even save you money in the long term, much like drip irrigation. Largely dependent on how big the house is, how much power is used, and where the house is located, the payback time for switching can vary, but for an average household with a high regular energy cost would be able to payback the initial investment in as little as 15 years (Maehlum, 2014).

A potential source of funding for this initial cost is the federal government. In a recent publication, the United States Department of Agriculture (USDA) showed that they are willing to fund such advancements in the agricultural industry in the name of invasive species, habitat management, soil erosion, and generalized conservation. Since all these factors contribute to the overall health and wellbeing of a farm, efficient watering is logically a top priority for the government.

These programs fall under The Conservation Reserve Program (CRP) which is a program offered by the USDA Farm Service Agency. The CRP is offered as part of an overall program to address invasive species research, technical assistance, and prevention and control that was set up by the USDA in 2015 (United States Department of Agriculture [USDA], 2015). The CRP specifically is a grant based program where the government is willing to supply money to farmers “for establishment of resource-conserving cover on environmentally sensitive croplands.” (USDA, 2015, p. 4). Among other programs, the Environmental Quality Incentive Program, which gives government aid to farmers who want to use more efficient and conservation friendly tools, and the Conservation Technical Assistance Program, which awards tools for conservation to private, tribal, and non federal lands, show a clear willingness for the government to aid in funding programs geared toward conservation and climate change problems (United States Department of Agriculture, 2015). The method under discussion to more efficiently water our farmland is expensive, but clearly the government is willing and able to encourage and fund conservation of farmlands in whatever way possible, even if that means switching to a more efficient water usage irrigation system.

Currently, despite its ability to conserve water, increase crop yields, and mitigate climate change impacts, the use of micro irrigation is not widespread. This is due in part to its high initial investment cost. With grants from the government to offset the initial costs, the system will eventually save money in the long term. A livelihood for farmers like Mike Wissemann, and food for the public like you, are only going to worsen as temperatures continue to rise. Water efficiency is important now more than ever before.

AUTHORS

Jeremy Brownholtz – Environmental Science

Molly Craft – Natural Resource Conservation

Noah Rak – Building and Construction Technology

Mary Lagunowich – Earth System

 

REFERENCES

Batchelor, C., Lovell, C., & Murata, M. (1996). Simple microirrigation techniques for improving irrigation efficiency on vegetable gardens. Agricultural Water Management,32(1), 37-48. doi:10.1016/s0378-3774(96)01257-7

Block, Ben. (2017). “Efficient” Irrigation Tool May Deplete More Water. Retrieved from http://www.worldwatch.org/node/5942.

Coumou, D., Robinson, A., & Rahmstorf, S. (2013). Global increase in record-breaking monthly-mean temperatures. Climatic Change,118(3-4), 771-782.

Dimick, D. (2014, August 21). If You Think the Water Crisis Can’t Get Worse, Wait Until the Aquifers Are Drained. Retrieved from https://news.nationalgeographic.com/news/2014/08/140819-groundwater-california-drought-aquifers-hidden-crisis/

Environmental Protection Agency [EPA]. (2016). Climate Change Indicators. Retrieved from https://www.epa.gov/climate-indicators/climate-change-indicators-drought

Hall, A. E. (2017). Heat Stress and its Impact. Retrieved from http://www.plantstress.com/Articles/heat_i/heat_i.htm

Hansen, L.D., Smith, B.N., & Criddle, R.S. (1998). Calorimetry of plant metabolism: A means to rapidly increase agricultural biomass production. Pure & Applied Chemistry, 70(3).

Honey Brake Lodge. (2017). Louisiana Delta Plantation: About. Retrieved from https://www.honeybrake.com/la-delta-plantation

Irmak, Suat. (2016) Impacts of extreme heat stress and increased soil temperature on plant growth and development. Retrieved from https://cropwatch.unl.edu/2016/impacts-extreme-heat-stress-and-increased-soil-temperature-plant-growth-and-development.

Joint Economic Committee Democratic Staff [JECDS]. (2012). The economic contribution of America’s farmers and the importance of agricultural exports. Washington, DC: U.S. Congress. Retrieved from https://www.jec.senate.gov/public/_cache/files/266a0bf3-5142-4545-b806-ef9fd78b9c2f/jec-agriculture-report.pdf.

Kaufman, Jill. (2016, August 16). Northeast Farmers Grapple with the Worst Drought in Over A Decade. Retrieved from https://www.npr.org/sections/thesalt/2016/08/30/491942025/northeast-farmers-grapple-with-worst-drought-in-more-than-a-decade.

Kromm, David. (2017). Water Encyclopedia: Science & Issue. Retrieved from http://www.waterencyclopedia.com/Oc-Po/Ogallala-Aquifer.html

Lee Engineering. (2017, July 31). 6 Reasons Why Drip Irrigation Pays For Itself. Retrieved from http://lee-engineering.com/irrigation/6-reasons-drip-irrigation-pays/

Lamont, W. J., Orzolek, M. D., Harper, J. K., Kime, L. F., & Jarrett, A. R. (2017, November 2). Drip Irrigation for Vegetable Production. Retrieved from https://extension.psu.edu/drip-irrigation-for-vegetable-production

Maehlum, M. A. (2014, July 18). How Long to Pay Off my Solar Panels? Retrieved from http://energyinformative.org/long-pay-solar-panels/

Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L.-S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5(86). http://doi.org/10.3389/fpls.2014.00086

Perlman, U. H. (2016, December 9). Irrigation Water Use: Surface irrigation. Retrieved from https://water.usgs.gov/edu/irfurrow.html

Schwarzenbach, V. (2017). Our Story. Retrieved from http://www.warnerfarm.com/our-story/

Shea, Andrea. (2016, August 6). Severe Drought Hits Majority of Massachusetts. Retrieved from https://www.npr.org/2016/08/06/488969852/severe-drought-hits-majority-of-massachussetts.

Simonne E., Hochmuth R., Breman J., Lamont W., Treadwell D., & Gazula A. (2015, October 29). Drip-irrigation Systems for Small Conventional Vegetable Farms and Organic Vegetable Farms. Retrieved from http://edis.ifas.ufl.edu/hs388

Stauffer, B. (2010). Drip Irrigation. Retrieved from https://www.sswm.info/category/implementation-tools/water-use/hardware/optimisation-water-use-agriculture/drip-irrigation

Tagar, A., Chandio, A., Mari, I.A., & Wagan, B. (2012). Comparative study of drip and furrow irrigation methods at farmer’s field in umarkot. World Academy of Science, Engineering and Technology 69, 788-792. Retreived from https://www.researchgate.net/profile/Farman_Ali_Chandio/publication/259346633_Comparative_Study_of_Drip_and_Furrow_Irrigation_Methods_at_Farmer’s_Field_in_Umarkot/links/00b4952b261f3be0ac000000.pdf

Thomson, A.M., Rosenberg, N.J., Izaurralde, R.C., Brown, R.A., & Benson, V., (2012). Climate change impacts on the conterminous USA: An integrated assessment. Part 3. Dryland production of grain and forage crops. Climatic Change, 69(1), 43-65. doi:10.1007/s10584-005-3612-9

United States Department of Agriculture [USDA]. (2015). U.S. Department of Agriculture (USDA) Grant and Partnership Programs that can Address Invasive Species Research, Technical Assistance, Prevention and Control. Washington DC. Retrieved from https://www.doi.gov/sites/doi.gov/files/uploads/USDA%20Grants%20Workbook%20FY%202016%20FINAL%2016%20Oct%202015.pdf

Vaughan, M,. Huffaker, A., Schmelz, E., Dafoe, N., Christensen, S., McAuslane, H., Alborn, H., Allen, L.H., Teal, P.E.A. (2016) Interactive effects of elevated [CO2] and drought on the maize phytochemical defense response against mycotoxigenic Fusarium verticillioides. PloS One. 11(7). doi: 10.1371/journal.pone.0159270

Wichelns D, Houston L, Cone D, Zhu Q, Wilen J. 1996. Farmers describe irrigation costs, benefits: Labor costs may offset water savings of sprinkler systems. Calif Agr 50(1):11-18. https://doi.org/10.3733/ca.v050n01p11.

Yonts, C., Eisenhauer, E., & Varner, D. (2007, June). Managing Furrow Irrigation Systems. Retrieved from http://extensionpublications.unl.edu/assets/html/g1338/build/g1338.htm#target

How Farming Oysters Impacts the Ocean

 

Oyster Farmer Chris Whitehead adjusting oyster cages

The district was blindsided by the lawsuit. The National Audubon Society, which is a non-profit organization that aims to fight for the conservation of the environment (“Audubon”, 2016) along with the California Waterfowl Association, sued the Humboldt Bay Harbor, Recreation and Conservation District (Kraft 2017). Humboldt Bay is an important stop for migratory birds to eat and rest on the Pacific Flyway, the path of migration for many birds (Simms, 2017).The Audubon society was outraged by the unjust approval for the expansion of a commercial oyster farm (owned by Coast Seafoods and Co) into the Humboldt Bay Harbor that would hurt Canada geese, Western sandpipers, and other migratory birds (Kraft, 2017). The Audubon society claimed that a faulty environmental report was used by the Conservation District to approve the expansion, and that 200 species of birds, 300 species of invertebrates, and over 100 plant species, including eelgrass, would be affected by this expansion (Kraft, 2017). Why does a decline of a 100 small plant species, like eelgrass, matter? Eelgrass supports a multitude of marine organisms and communities, including but not limited to: crabs, sea turtles, young herring, and other microorganisms through acting as food and shelter. With the expansion of aquaculture as a business, about half of the bay would incorporate wire-like structures (Kraft, 2017). Certain methods to harvest oysters trample eelgrass in the process, which for a species already in extensive decline on the west coast, could have detrimental impacts on the ecosystem as a whole (Kraft, 2017). The spokesperson for the Audubon society, Mike Lynes, points to the fact that with a decline of eelgrass comes a decline of certain birds like the black brant and a decline in certain fish as well (Kraft, 2017). Any decline in a resident species in a habitat will affect the food chain and natural flow of the ecosystem. As if not already expected, the general manager of Coast Seafoods denied that the environmental report was faulty and insisted that the proper measures were taken to evaluate the environmental impact the expansion would have on the Humboldt Bay Harbor (Kraft, 2017). Due to the risk of negative alterations to the seagrass life cycle by oyster aquaculture, the size and number of oyster aquaculture farms must be limited in location and method of farming. Continue Reading

The Impact of Aquaculture on the Environment

Open ocean aquaculture

 

The rapidly growing human population is creating an increase in the demand for fish worldwide (Tidwell & Allan, 2001). Unfortunately, the amount of fish captured in fisheries is no longer meeting this demand because the annual production of captured fish has not changed significantly since 2011 (Food and Agriculture Organization [FAO], 2016, p. 4). Overall, 93.4 million tonnes of fish were captured in 2014 but 146 million tonnes of fish were consumed (FAO, 2016, p. 4). Ultimately, overfishing is the main cause of this widening gap between fish consumption and the amount of fish being captured. In 2014, capture fisheries depleted 30 million tons of fish from the most exploited fish species, including Atlantic salmon and trout (FAO, n,d, p. 3). However, aquaculture systems provide a unique solution to alleviate this exploitation caused by overfishing because they are designed to breed and harvest fish rather than capture wild species (National Oceanic and Atmospheric Administration [NOAA], n.d. a). Aquaculture is becoming a more popular fish production method as it has an annual increase of 6 percent and is projected to produce over half of the fish consumed by 2025 (FAO, 2016, pp. 22, 172). In contrast, capture fisheries’ production rates are steadily declining and are predicted to collapse by 2048 (National Geographic, 2016, para. 8). In addition to providing relief for exploited fish populations, the success of aquaculture systems is attributed to the ability to selectively breed and rear fish that have a higher growth rate (Hindar, Fleming, McGinnity & Diserud, 2006). This increased growth rate can increase fish production and ultimately reduce fish price by almost 2 percent by the year 2030 (World Bank, 2013. p. xviii). Valderrama, Hishamunda & Zhou (2010) also demonstrate that the global aquaculture industry provides 16 million jobs worldwide (p. 24). Overall, increasing aquaculture production, can prevent large amounts of malnutrition in the human population by providing an inexpensive protein source (FAO, 2016). Continue Reading

Slowing the Decline of the Bombus

North American Bombus Pollinates a Vibrant Flower.

 

Alexander Neuzil, Science and Biochemistry

Chase Balayo, Building Construction Technology

Eli Lagacy, Enviornmental Science

 

When we think of our favorite apple, we typically do not associate the image with a

school-aged child precariously perched among the uppermost branches, balancing a pot of pollen

in one hand, while holding a paintbrush in the other hand to paint each individual bud with

pollen.  We don’t usually envision hundreds of farmers walking blossom to blossom, hand

pollinating each individual flower one at a time, hoping that it bears fruit that can be sold at a

market.  As far-fetched an image this is, it’s the reality that is happening right now in China.

Goulson (2012) provides such an example in an article he published in early 2012.  In his article,

Goulson describes how declines in natural pollinators in southwest China due to excessive

pesticide use, and the destruction of natural pollinator habitats, has led to the farmers, and their

children, being forced to hand pollinate the apple and peach trees that grow in that region.  He

goes on to describe what a market without bees could look like, describing the lack of berries,

apples, peas, beans, melons, and tomatoes all of which depend on pollinators such as bees to

thrive (Goulson, 2012).  Nearly 75 percent of crops that are grown globally for consumption by

humans require the services of pollinators to ensure adequate yields (Potts et al., 2010).

Furthermore, the sheer demand by consumers for these crops has skyrocketed in the last half

century, on average doubling over that time span (Goulson, 2012).  Potts et al. (2010) indicates

that the steady increase of crop cultivation occurred from 1961 onward (Potts et al., 2010).

Meanwhile Goulson (2012) also indicates that a combination of increased caloric intake per

person increased nearly 30 percent, and the doubling of the worldwide human population from

just over three billion in 1961 to just over seven billion in 2011 has produced an added strain to

pollination services, such as the bumble bee, as there are not enough pollinators to go around

(Goulson 2012; US Census Bureau).  These trends coupled with the decline of pollinators due to

the combination of several factors, including pathogens, pesticides, and habitat loss can have

serious negative impacts to commercial production of crops which are necessary for food

diversity and production.  (Grixti, Wong, Cameron, & Favret 2009). Continue Reading

Polyculture (IMTA), a better way to produce fish

 

Aquaculture of the Future

Kendall Sarapas – Natural Resource Conservation Wildlife

Alexis Duda – Sustainable Food & Farming

Aaron Johnson – Building and Construction Technology

The fishing industry has been important since the dawn of mankind, being a rich and reliable food source. One of my first fishing voyages was with my grandpa on his boat in the sea. He was an avid fisherman who went fishing quite often. I caught my first salmon on his boat which made me want to explore the world of salmon. As soon as I saw the tip of the fishing pole point down towards the water I ran over. I started reeling in what felt like a ton of bricks on the other end dragging me to the side of the boat. I clenched on to that pole with all of my strength and reeled in the massive salmon very slowly. The weight of the fish on the hook squirming around below the water was a struggle for any ten year old to handle. My grandpa came running over and helped me reel in the salmon. That weekend we chopped up the salmon and cooked it for dinner. After that first salmon was caught, I needed to know more about their way of life. Continue Reading

Environmental Impacts of Shrimp Aquaculture and Integrated Multi-trophic Aquaculture (IMTA) as a Solution

Kaitlyn McGarvey – Pre-Veterinary Science

Sean O’Neil – Environmental Science

Spencer Scannell – Natural Resources Conservation

In 1987, Champerico, Guatemala suffered a widespread outbreak of a severe neurological disease called paralytic shellfish poisoning (PSP). What began as six people at health clinics complaining of headaches, dizziness, and weakness, quickly grew into a much larger problem. Within hours, over 100 people sought medical attention for a wide range of symptoms. One child’s symptoms quickly progressed to respiratory paralysis, ultimately causing death. A total of 187 people received medical treatment and of those, 26 died (Rodrigue et al., 1990, p. 267).  Further investigation identified the consumption of clams or clam soup as the common link between the affected individuals (Rodrigue et al., 1990). Continue Reading

The dramatic decline in Honeybee populations

 

Matthew Canning- Natural Resource Conservation

Andrew Koval- Wildlife Conservation

Kendra McNabb- Animal Science

Bees are quite an amazing insect, they pollinate over 80% of all flowering plants including 70 of the top 100 human food crops. One in three bites of food that we eat is derived from plants pollinated by bees (Allen-Wardell et al, 1998). Needless to say, bees are important to the crops we humans consume on a daily basis. Over the past two decades, the decline in bee population has reached a critical point. The United States Environmental Protection Agency (2017) concluded that there is a 30% decrease in hive losses annually within the United States. When introduced to stressors, bees can have adverse reactions, leading to what is known as Colony Collapse Disorder (CCD). This disorder that is plaguing global bee populations causes many of the adult and working bees in a specific hive to die out, leaving the colony unable to nourish and protect offspring. This eventually leads to a full destruction of the entire hive. The most logical reason for this phenomenon is the introduction of specific stressors to the hive and its bees directly (VanEngelsdorp, Evans, Saegerman, Mullin, Haubruge, Nguyen, Brown, 2009). If something isn’t done to manage declines in bee populations we can expect a negative impact agriculturally and ecologically. Allen-Warden et al. (1998) showed insecticides and pesticides’ have adverse effects on bees and other pollinating wildlife. This study also showed a reduction in pollinators caused a decrease in blueberry production. We can expect a similar impact on crops to continue as time goes by and this issue progresses. Estimates of the economic toll of honey bee decline is upwards of $5.7 billion per year (United States Environmental Protection Agency, 2017). It is not out of the question that soon homeowners will have trouble keeping their personal gardens sufficiently pollinated, and forego that simple yet satisfying pastime. Knowledge of bee decline  has been acknowledged for many decades, but research and data behind the reasoning for the global decline are still heavily debated. Continue Reading