Managing Overpopulated Feral Horses in the Great Basin, USA

Emily Bartone, Natural Resource Conservation; Charlotte Sedgwick, Animal Science; Derek Tripp, Building Construction Technology

Feral, invasive horses crowd government-managed corrals

The Great Basin of the United States is currently inhabited by over 80,000 wild non-native horses. Being a wild non-native species, they survive without the assistance of humans in a region outside of their native distribution range. The horses we now see in the Great Basin were brought to this continent by Europeans during colonization. Historically, large predators such as mountain lions and wolves also roamed the landscape and could control these populations. Humans eradicated nearly all large predators during the past century of extensive development. This has left many prey species, including horses, free to expand without limit (Jackson, S., 2018). Continue Reading

Fighting Gypsy Moths With The Fungal Predator E. maimaga

Gypsy moth on oak leaf

Authors: Izaak Jankowski (Animal Science), Reilly Mcnamara (Animal Science), and Quinn Slavin (Horticulture)

The year is 1868, and a French scientist by the name of Leopold Trouvelot has just accidentally released an organism that will ruthlessly defoliate trees of Massachusetts forests in the years to come (DEEP, 2018). This disastrous creature is none other that the Gypsy moth; a species of moth which has been living and thriving in European and Asian ecosystems for thousands of years (Libehold, 2018).  It took this moth ten years prior to establishment to reach a population level that was sizable enough to notice (Libehold, 2018). Within 100 years, this moth had spread from the point of origin in Boston to areas all throughout the northeast coast, into the great lake states, and even into further northern areas such as Quebec and Ontario (DEEP, 2018). This rapid expansion was fueled by the vast amount of plant species the moth is able to feed upon and the limited predator it had.   Continue Reading

Assessing and Combating the Enteric Methane Contributions of Ruminants

Authors: Melissa Bonaccorso (Natural Resource Conservation); Morgane Golan (Animal Science, Pre-Vet); Ben Phaneuf (Building Construction Technology)

In a new effort to better quantify the methane emitted by livestock, researchers are utilizing methane-collecting backpacks on cows.

Most of us have the best intentions when making decisions at the grocery store – we often try to choose what is best for our health, and many of us have environmentalism in mind, as well. It can be difficult to know what is best, and all the contradictory information out there can leave us frustrated and confused. It seems that every few months there is a new set of rules for how we are supposed to eat: vegan, vegetarian, antibiotic-free, gluten-free, cage-free, GMO-free; and when it comes to beef, grass-fed is now all the rage. Unfortunately, if environmental sustainability is your motive, grass-fed beef actually does more harm than good. Ruminants such as cattle, sheep, and goats, are animals that are able to subsist on plant matter because they have a stomach compartment, the rumen, in which microorganisms digest these cellulose products. However, this form of digestion, known as enteric fermentation, comes at a cost. The microbial ecosystem of the rumen generates methane as a byproduct of this fermentation, in a process called ruminal methanogenesis (Lassey 2006). Methane (CH4) is a greenhouse gas, and is of critical importance because it has a global warming effect that is 28-36 times that of carbon dioxide (EPA). Nearly half of all human-caused methane emissions come from agriculture, and livestock contributes nearly 70% of CH4 emissions from the agricultural sector (Vergé et al. 2008, p.132; Lassey, 2006; Wysocka-Czubaszek 2018). In the context of the US specifically, methane accounts for 10% of our total greenhouse gas emissions, and 26% of these methane emissions comes from enteric fermentation – the second-highest portion next to natural gas and petroleum systems (EPA). While its concentration in the atmosphere is much lower than that of CO2, methane is 20 times more effective at trapping heat than carbon dioxide is, and has the potential to contribute 18% of the total expected global warming up to the year 2050, next to carbon dioxide’s 50%  (Milich, 1999). Thus, while CO2 tends to get the most public attention for its contributions to climate change, methane is a much more potent greenhouse gas, which calls for more significant consideration.

An average of 30 million animals per year are slaughtered for the beef industry in the US, and an average of 2 million animals, with an additional 3.4 billion pounds of beef, are imported to the US from Canada annually (ERS, 2015). In addition, about 9 million milk cows are active in the US in 2016 alone (statista.com). In all, approximately 20 billion pounds of beef is consumed in the US each year, accounting for approximately half of the American dietary carbon footprint (Waite, 2018). The amount of CH4 emissions from ruminants in 2016 was equivalent to 170 million metric tons of CO2 (Center for Sustainable Systems, 2018). To put these numbers into context, the effect of greenhouse gas emissions produced by annual US beef consumption is equivalent to that which would result from a car driving around the entire Earth 22,000 times (space.com; ewg.org). In response to the severity of methane output via enteric fermentation, the scientific community has become increasingly concerned with identifying resolutions that are considerate of productivity within the agricultural sector, as well as environmental efficiency.

Significant enteric methane production, and the overall increasing trend in GHG emissions by the beef and dairy industries, are symptomatic of a high demands for livestock products (Place, 2016). Many environmentalists and animal-rights activists advocate for a drastic decrease in or even total elimination of beef and dairy consumption in the American diet. Reduction in meat and dairy consumption is certainly linked to a lower personal environmental impact: the greenhouse gas emissions associated with the average meat-eater’s diet are about 1.5 to 2 times those of vegetarians and vegans, respectively (Scarborough, et al. 2014). But most people are resistant to altering their diet in such a radical way, due to a plethora of social and physical barriers; global demand for meat products is actually increasing at a rate faster than land availability can accommodate (Kwan, 2011; Jenkins, 2004; Verge, 2008). In fact, demand for beef and dairy products in the US is expected to increase 70% within the next 36 years (Place, 2016). Although veganism and vegetarianism can help reduce total greenhouse gas emissions, we simply cannot rely on everyone to adopt these lifestyles if we are to make significant changes with haste. In addition, campaigns to reduce meat consumption pose a threat to cattle farmers’ incomes. Harsh restrictions on the beef and dairy industries, or campaigns to reduce the consumption of these products across the nation and world, are both insufficient and would also pose a threat to those whose livelihoods depend on these industries. For these reasons, research teams including veterinarians, environmental specialists and other invested individuals, are collaborating to identify strategies for reducing ruminal methane emissions, without harming invested parties. To minimize the impact of ruminal methane emissions without negatively affecting animal welfare and the livelihoods of stakeholders, we propose the integration of dietary supplements into ruminal feed to naturally inhibit methanogenesis.

One of the most promising methods of reducing ruminal methanogenesis without posing a threat to the industry or the animals is through supplementation of the animals’ diets. Since feed efficiency and methane production are intrinsically linked, ruminants reared on cellulose-based diet, such as those destined to become the beloved “grass-fed” beef, will produce more methane, and for a longer time than they might otherwise, since the cellulose-based diet is not conducive to optimal growth of the animals (Tirado-Estrada et al., 2018). Experts in the field have acknowledged that completely altering the diet of every ruminant on earth is not feasible: grain-based diets can be costly and are often inaccessible (Tirado-Estrada et. al., 2018). It is possible and cost-effective, however, to improve the digestibility of the livestock diet by replacing some of the fiber content with protein-rich concentrates, while still utilizing the typical pasture-based diet. Increasing the digestibility of the diet of dairy and beef cattle can reduce methane emissions in two ways: first, by helping these cows reach market weight sooner, thereby limiting the amount of methane that each cow can produce throughout its life, and second, by inhibiting the process of methanogenesis in the rumen. Any compound with a high protein/low fiber content would be a fine contender for the improvement of the ruminal diet, but those that are naturally sourced, readily available and less costly are most ideal for the animals, the environment, and stakeholders. An excellent option which meets this criteria has been identified: mangosteen peel powder (MSP). Mangosteen peel powder, or Garcinia mangostana, is very highly regarded among animal nutritionists, because it does not negatively affect the crucial microbial populations of the rumen, but can reduce the population of methanogens, the microorganisms most responsible for methane production, by up to 50% in a safe manner (Polyorach et. al., 2016). The utilization of MSP in feed has been found to significantly reduce methane production between 10-25% (Wanapat et al. 2015; Manasri et al 2012; Polyorach et al. 2016). Aside from reducing the population of methanogens, protein-rich plant concentrates present in mangosteen peels, called saponins and tannins, have also been found to minimize the growth and activity of methane-producing protozoa in the rumen, without inhibiting their function entirely (Wallace et al, 2002, Patra 2011). Supplementing the diet with naturally derived plant compounds such as this effectively reduces methane production, and does so without causing significant consequences to the animal’s microbial system or putting the animal at risk for ruminal disease (Patra, 2010).

Dietary additives are already widely used to supplement cattle feed, which makes further supplementation feasible once high-protein supplements, like MSP, are made readily available in the national market. For example, Rumensin is a feed additive that has been used in the cattle industry for over 4 decades (Greenfield et al., 2000). The active ingredient in Rumensin is a coccidiostat, meaning that it is an antibiotic specifically geared at killing coccidiosis bacteria in the animal body. Rumensin is an attractive product because of its prevention and control of disease, as well as its capacity to improve feed efficiency by 4% (“Data on Dairy Science”, 2012). Because of the traction and popularity associated with this feed supplement, which improves productivity while also combating a severe public health crisis, there is potential for MSP to be utilized in a similar manner, with the intent to mitigate the impending public health crisis of climate change.

In anticipation of concerns among farmers and other food animal industry leaders that dietary supplementation would be too costly, it is important to emphasize that methane reduction and productivity are not mutually exclusive; in fact, quite the opposite is true. Dietary manipulation, as a means by which to decrease methane emissions, may also have the attractive quality of improving feed efficiency and animal productivity (Lovett et al., 2003). Protein rich, plant-based supplements are capable of improving milk production and composition, daily weight gain, and feed conversion efficiency (Khan et al., 2015). In other words, with the use of dietary supplements, animals can be brought to their goal weight more quickly while producing higher-quality meat. The inclusion of such methane-inhibiting concentrates has been found to correspond directly with more rapid animal development and increased body weight while potentially reducing enteric methane by up to 40% (Benchaar et. al., 2001, Lovett et al., 2003). The investment in dietary supplements may therefore ultimately result in money saved that would otherwise be spent on longer rearing times to get animals to their goal weight. The inclusion of protein-rich plant concentrates also has the potential to not only decrease enteric methane production but also increase the fat content in milk when included in the diets of dairy cows (Tirado-Estrada et. al., 2018). Integration of protein-dense supplements into the diet may be the most feasible option for increasing productivity while decreasing enteric methane production by dairy and beef cattle. For this reason, dietary supplementation of this sort is considered the most appealing and cost-effective option to motivate farmers to adopt more sustainable practices (Patra, 2010).

In order to effectively address

 

 

 

 

 

 

References

Beauchemin, K. A., Henry Janzen, H., Little, S. M., McAllister, T. A., & McGinn, S. M.  

(2010). Life cycle assessment of greenhouse gas emissions from beef production in western canada: A case study

doi://doi-org.silk.library.umass.edu/10.1016/j.agsy.2010.03.008

Benchaar, C., Pomar, C., & Chiquette, J., (2001). Evaluation of dietary strategies to reduce methane production in ruminants: A modelling approach. Canadian Journal of Animal Science, 81(4), 563-574. doi:10.4141/A00-119

Beef Industry Statistics and Information. (2018). United States Department of       Agriculture, Economic Research Service. Ers.usda.gov.

Center for Sustainable Systems, University of Michigan. 2018. “Carbon Footprint Factsheet.” Pub. No. CSS09-05

Data on Dairy Science Reported by Researchers at Ohio State University. (2012, April 24). Life Science Weekly, 450. Retrieved from http://find.galegroup.com/grnr/infomark.do?&source=gale&idigest=f1eac380167b7605799a391ef47d98d2&prodId=GRNR&userGroupName=mlin_w_umassamh&tabID=T004&docId=A288067859&type=retrieve&PDFRange=%5B%5D&contentSet=IAC-Documents&version=1.0

EPA. (2018, October 31). Overview of Greenhouse Gases. Retrieved from https://www.epa.gov/ghgemissions/overview-greenhouse-gases#methane

Gόlcher C.S. (2013). Agricultural Subsidies in the form of Environmental Incentives.             International Institute of Social Studies. 1-70.

Greenfield, R., Cecava, M. and Donkin, S. 2000. “Changes in mRNA Expression of Gluconeogenic Enzymes in Liver of Dairy Cattle during the Transition of Lactation.” J. Dairy Sci. 83: 1228–1236.

Jenkins, D. J. (2004). Why be a vegetarian? The Lancet, 363(9419), 1482. doi:10.1016/S0140-6736(04)16126-6

Khan, N. A., Yu, P., Ali, M., Cone, J. W., & Hendriks, W. H. (2014). Nutritive value of

      maize silage in relation to dairy cow performance and milk quality. Journal of the Science of Food and Agriculture, 95(2), 238-252. doi:10.1002/jsfa.6703   

Kwan, S., & Roth, L. M. (2011). The everyday resistance of vegetarianism. In Embodied Resistance: Challenging the Norms, Breaking the Rules (pp. 186-196). Vanderbilt University Press.

Lassey, K. R. (2007). Livestock methane emission: From the individual grazing animal through national inventories to the global methane cycle doi://doi-org.silk.library.umass.edu/10.1016/j.agrformet.2006.03.028

Lovett, D. K., Lovell, S., Stack, L., Callan, J., Finlay, M., Conolly, J. et al. (2003). Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livestock Production Science, 84, 135–146.

Manasri, N., Wanapat, M., & Navanukraw, C. (2012). Improving rumen fermentation and feed digestibility in cattle by mangosteen peel and garlic pellet supplementationdoi://doi.org/10.1016/j.livsci.2012.06.009

       Meat Eaters Guide to Health and Climate. (2011). EWG.

Methane and nitrous oxide emissions from natural sources. Retrieved from https://nepis.epa.gov/Exe/ZyPDF.cgi/P100717T.PDF?Dockey=P100717T.PDF

Milich, L. (1999). The role of methane in global warming: Where might mitigation strategies be focused? Global Environmental Change, 9(3), 179-201. doi:10.1016/S0959-3780(98)00037-5

Nevel, J. V., & Demeyer. (1977, September 01). Effect of monensin on rumen metabolism in vitro. Retrieved from https://aem.asm.org/content/34/3/251

Patra, A. K. (2011). Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions. Environmental Monitoring and Assessment, 184(4), 1929-1952. doi:10.1007/s10661-011-2090-y

Pino, F., & Heinrichs, A. (2016). Effect of trace minerals and starch on digestibility and rumen fermentation in diets for dairy heifers 1. Journal of Dairy Science, 99(4), 2797-2810. doi:10.3168/jds.2015-10034       

Place, S.E. (2016). Enteric Methane Emissions Measurement System for Grazing Beef and Dairy Cattle. National Institute of Food and Agriculture. usda.gov

Polyorach, Sineenart & Wanapat, Metha & Cherdthong, Anusorn & Kang, Sungchhang. (2016). Rumen microorganisms, methane production, and microbial protein synthesis affected bymangosteen peel powder supplement in lactating dairy cows. Tropical Animal Health and Production. 48. doi:10.1007/s11250-016-1004-y.

Sawamoto, T., Nakamura, M., Nekomoto, K., Hoshiba, S., Minato, K., Nakayama, M., & Osada, T. (2016). The cumulative methane production from dairy cattle slurry can be explained by its volatile solid, temperature and length of storage. Animal Science Journal, 87(6), 827-834. doi:10.1111/asj.1249

Scarborough, P., Appleby, P. N., Mizdrak, A., Briggs, A. D., Travis, R. C., Bradbury, K. E., & Key, T. J. (2014). Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Climatic change, 125(2), 179-192.5

        Sharp, T. (2017). How Big is Earth?. Science & Astronomy. Retrieved from:    

   https://www.space.com/17638-how-big-is-earth.html

Skaggs, R., & Falk, C. (1998). Market and Welfare Effects of Livestock Feed Subsidies in Southeastern New Mexico. Journal of Agricultural and Resource Economics, 23(2), 545-557. Retrieved from http://www.jstor.org/stable/40986999

Statista. (2018, May). Number of beef and milk cows in the U.S., 2017 | Statistic. Retrieved from https://www.statista.com/statistics/194302/number-of-beef-and-milk-cows-in-the-us/

Tanentzap AJ, Lamb A, Walker S, Farmer A (2015) Resolving Conflicts between Agriculture and the Natural Environment. PLoS Biol 13(9): e1002242. doi:10.1371/journal.pbio.1002242

Tirado-Estrada, G., Abdelfattah Z.M. Salem, Alberto, B. P., Deli Nazmin, Tirado-Gonzalez, Luis, A. M., Luis, M. R., . . . Mlambo, V. (2018). Potential impacts of dietary lemna gibba supplements in a simulated ruminal fermentation system and environmental biogas production. Journal of Cleaner Production, 181, 555-561. doi://dx.doi.org/10.1016/j.jclepro.2018.01.120

Todd, R. W., Altman, M. B., Cole, N. A., & Waldrip, H. M. (2014). Methane emissions from a beef cattle feedyard during winter and summer on the southern high plains of texas. Journal of Environmental Quality, 43(4), 1125. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25603061

Understanding Global Warming Potentials. Retrieved from: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials

Vergé, X. P. C., Dyer, J. A., Desjardins, R. L., & Worth, D. (2008). Greenhouse gas emissions from the canadian beef industry doi://doi-org.silk.library.umass.edu/10.1016/j.agsy.2008.05.003

Waite, R. (2018). 2018 Will see high meat consumption in the U.S., but the American Diet is Shifting. World Resources Institute. Wri.org.

Wallace, J. R., McEwan, N. R., McIntosh, F. M., Teferedegne, B., & Newbold, J. C. (2002). Natural products as manipulators of rumen fermentation. Asian-Australasian Journal of Animal Sciences, 15(10), 1458-1468. https://doi.org/10.5713/ajas.2002.1458

Wanapat, M., Cherdthong, A., Phesatcha, K., & Kang, S. (2015). Dietary sources and their effects on animal production and environmental sustainability. Animal Nutrition, 1(3), 96-103. doi:10.1016/j.aninu.2015.07.004

Wysocka-Czubaszek, A., Czubaszek, R., Roj-Rojewski, S., Banaszuk, P. (2018). Methane and Nitrous Oxide Emissions from Agriculture on a Regional Scale. Journal of Ecological Engineering, 19(3), 206-217. https://doi.org/10.12911/22998993/86155

 

Hydroelectric Power in The Snake River

 

Samantha Bruha: Animal Science

Shane Murphy: Horticulture

Jake Schick: Building Construction Technology

Ashley Artwork: Building Construction Technology

The Nez Perce people reside on the Snake River in North Central Idaho and still practice a hunter-gatherer way of life (Smith, 2018).  In 1855, The United States Government and five Native American tribes residing in Washington, Oregon, and Idaho signed the Treaty of Walla Walla (Smith, 2018)  Since the the original treaty, the Nez Perce Tribe has retained the right to fish, to hunt, and to graze livestock on unclaimed lands outside of the reservation (Smith, 2018).  Due to the addition of hydroelectric dams, beginning in the 1950’s on the Columbia and Snake Rivers, the Nez Perce Tribe has suffered a great loss of fishing resources from the effects of dams on the Salmon populations (Quirke, 2017).  Elliott Moffett, a 65 year old member of the Nez Perce Tribe, fights for Salmon in the lower Snake River (Quirke, 2017). “‘I like to say we are like the Salmon, we need clean, cold, swift running water. And they don’t have that because the dams have impounded their river,’” Moffett states (Quirke, 2017).  Moffett and his fellow activists at the Nimiipuu Protecting the Environment organization, have dedicated their lives to defending the environment and the Nez Perce rights (Support|Nimiipuu Protecting the Environment, 2018).  Every decision the tribe makes has “seven generations ahead” in mind and the scarcity of resources is making it harder and harder to teach future generations how to live off of the land (Support|Nimiipuu Protecting the Environment, 2018).

  Continue Reading

It’s Sink or Swim for Lobsters in Southern New England: Climate Change is Turning Southern New England into a Boiling Pot and Lobsters are Leaving

There are two stories in New England currently: one of success and one of failure. The lobster fishing industry is without question one of the most significant parts of the New England identity and culture. Lobster fishing has provided a lucrative livelihood since the 1800s and continues to do so for those fishing in Northern New England. While those fishing for lobster in the North are hauling record numbers, the industry in the South has been heading toward the verge of collapse since the late 1990s. Tom Tomkiewicz, a Massachusetts lobsterman who fishes in Long Island Sound describes it himself, saying “there is nothing here… it’s crazy” (Abel, 2017). How can one of the biggest industries of a region suddenly be at massively different levels of success? The answer lies in the rising temperatures of the Atlantic Ocean and historic management practices that have lead to this disparity. Continue Reading

Green Weed, Green Planet

Tyler Clements (Environmental Science), Rudy Marek (Geology), Mitch Maslanka (Natural Resource Conservation), Olivia Santamaria (Horticulture)

In 1996, California voted to become the first state to legalize marijuana for medical use. Fast forward to today, and the legalization of marijuana is now a seemingly unstoppable movement that is sweeping across the United States. With recreational and medicinal use being rapidly legalized all over the country, 29 states have already legalized marijuana medicinally and 9 have recreationally (Robinson, Berk, & Gould, 2018, para. 2). From the start of California legalizing marijuana, this new industry with seemingly endless potential was given the green light to begin at the commercial level. As of 2017, the industry has grown from $6.73 billion to $9.7 billion in North America (Borchardt, 2017, para. 1; Robinson, 2018, para. 6; Zhang, 2017, para. 2). The entrepreneurs of the country began to think of ways to create and expand a marijuana based business and one of the most important aspects of this process was how the marijuana itself was going to be grown. Continue Reading

Preserving New England Lobster Fisheries in the Face of Climate Change

By Thomas Isabel, Hannah Brady, and Shawn Monast

Since the 1970’s, the waters off the coast of Southern New England have been warming at a startling rate due to a toxic combination of man-made factors including greenhouse gases and pollution. These changes to the Earth’s atmosphere are happening at a rapid pace, making climate change one of the biggest issues facing humanity. The aqua life inhabiting oceans, especially coastal waters, are being forced farther North into ocean environments with cooler temperatures fitting their ideal thermal range. One of the many species being affected by increasing water temperature is the American lobster, scientifically known as the Homarus Americanus. These ocean creatures have been around for almost 500 million years, long before any humans were recorded on Earth, and they are now being pushed out of their homes as a consequence of human actions. Although lobsters constantly face different challenges to their populations such as predation and disease, climate change has become their biggest threat in the last decade. Fishermen all along the Eastern coastline rely on the catch and sale of lobsters to make a living to support their families and keep the market afloat. Without this species, fishermen and seafood establishments would miss out on a potentially crucial portion of revenue and be forced to rely on the catch and sale of other ocean species or perhaps a different profession in the fishing industry. The American lobster makes up a large percentage of income for fisherman and their migration due to global warming is crippling the economy of coastal regions. In order to save lobster fisheries in southern New England from climate change, the Atlantic States Marine Fisheries Commission needs to educate fishermen on the constant changes in thermal temperatures range, new production possibilities, and the migration patterns through technological advancements.  

Continue Reading

Impacts of Climate Change on Southern New England Lobster Fisheries

Victoria Bouffard, Pre-Veterinary Science

Matt Sullivan, Horticulture

James Sullivan, Fisheries

Southern New England fisherman are still catching lobsters, but not in the way they want to be. They are not being caught in traps or nets, but in the stomachs of their predators. Bart Mansi, a lobster fisherman from Long Island Sound, hears from the local bass fisherman about the baby lobsters they find eaten by their catch. Some of the sea bass they pull in have over 10 baby lobsters in their stomachs. This not an uncommon occurrence,  multiple factors are involved with the scarcity of lobsters in southern New England, and increased predation is just the icing on the cake (Skahill & Mack, 2017). The southern New england lobster population has declined dramatically in the past few decades, while catches in Maine have soared. Harvests in Northern regions like the Gulf of Maine and Georges Bank have seen an increase from 14,600 mt (metric tons) in 1990 to 33,000+ mt in 2009, and from 1,300 mt in 1982 to 2,400 mt in 2007, respectively. While the southern New England region landings in Connecticut, Rhode Island, Massachusetts, and the New York border of Long Island Sound, declined from a peak of 10,000 mt from 1997 to 1999, to a low of less than 3,000 mt from 2003 to 2007 (Howell 2012). This dramatic shift in lobster settlement is due to a combination of factors, the most pressing being climate change. The Atlantic Ocean has increased by 0.23℃ every decade from 1982 to 2006, with temperatures varying by region (Pinsky & Fogarty, 2012). As the ocean temperatures rise, the more southern regions of New England are crossing a temperature threshold in which the water is no longer hospitable to lobsters, causing them to migrate North.

Continue Reading

Shifting Subsidies From Corn Ethanol to Solar

Evan Chakrin: Horticulture

Ryan White: Animal science

Tim Miragliuolo: Building and Construction Tech.

 

 

A sun tracking solar panel in a corn field. (http://www.shutterstock.com)

 

 

Nobody likes wasteful government spending on programs that don’t benefit consumers or the environment, but that is exactly what’s happened with decades of corn ethanol subsidies. The American taxpayer is forced to underwrite the production of an inefficient energy source, and forced again to buy its product when used in gasoline mixtures at fuel stations across the country. Gasoline-ethanol mixes cost consumers miles per gallon and clog the fuel systems of seasonal use equipment and recreational vehicles (Regalbuto, 2009; Patzek et al., 2005) and do little to help the environment (Vedenov & Wetzstein, 2008). After having cost US taxpayers over 40 billion dollars from 1978-2012 (Melchior, 2016), federal tax code supports over 26 billion in subsidies for corn ethanol through 2024 (“Federal subsidies”, 2015). It is time to shift federal incentives toward truly renewable energy systems, and solar photovoltaic [PV] technology provides an excellent answer to our future energy needs. Due to the relative land usage, flexibility of installation, and greenhouse gas emission efficiency of PV systems, we believe that all future corn ethanol tax incentives should be redirected toward the installation of photovoltaic solar panel systems either in isolated systems or through collocation with viable biofuels and vegetable crops. Continue Reading

Monocultures in America: A System That Needs More Diversity

 

 

Early in the morning after a hot cup of coffee, Jim climbs up onto his tractor, turns the key, and drives to the edge of his vast corn fields. The arms of the spray boom unfold, creating a wingspan of 120 feet. As Jim drives down designated rows, a combination of water and chemicals sprays over his crops coating everything, but killing only pesky weeds (“Crop Sprayer”, n.d.). While most perish under the harsh conditions, a few weeds survive. Application after application, season after season, more weeds survive. Attempting to save his corn yields while still making some profit, Jim increases application rates and dates. However, as time goes on, nothing seems to help. The pesky weeds outsmarted the old farmer, leaving him in despair (“How Pesticide Resistance Develops”, n.d.).

Jim, like thousands of farmers across the country, is experiencing negative aspects of monoculture, or the agricultural practice of growing a singular crop species in which all plants are genetically similar or identical over vast acres of land (“Biodiversity”, n.d.). Despite high yields and relatively low input prices, growing just one species of crop on many acres of land creates major pest problems. Current American agricultural policies covered by the Farm Bill incentivize the overproduction of commodity crops, such as corn, wheat, soybeans and cotton, in monoculture systems. When the Farm Bill originated during the Great Depression, however, its goal was to preserve the diversified farm landscape. At the time, surplus ran high but demand fell low, driving crop prices into the ground. Farmers struggled to make mortgage payments. Fearing that farms would be forced out of business, President Roosevelt passed the Agricultural Adjustment Act, which paid farmers to not cultivate a certain percentage of their land. This successfully reduced supply and increased prices, keeping the market afloat (Masterson, 2011). Following the stabilization of crop prices, the Farm Bill became a permanent piece of legislation in 1938. For the next forty years, farmers continued to grow both staple crops (corn, wheat, and oats) and specialty crops (fruits and vegetables), as well as livestock (Haspel, 2014).

During the latter half of the 20th century, American agriculture experienced an overhaul. The Green Revolution during the 1960s increased crop production through the introduction of synthetic fertilizers, pesticides, high-yielding crop varieties, and farm equipment mechanization (Mills, n.d.). Farm size dramatically increased over time; since the 1980s, the average number of acres per farm increased by over 100% (DePillis, 2013). Farms consolidated, resulting in 20% of farmers producing 80% of agricultural outputs (Mills, n.d.). New practices, combined with new additions to the Farm Bill, changed the way farmers managed risk (Haspel, 2014). One such addition included the Marketing Loan Program, which revolves around a set price agreed upon by Congress. If crop prices fall below a certain point, the U.S. government will reimburse farmers the difference. This reimbursement program encourages farmers to increase production regardless if they need to or not. The more they grow, the more money they make, even if it lowers current market crop prices (Riedl, 2007). In 1996, for example, Congress increased the price point of soybeans from $4.92 to $5.26 a bushel. To capitalize on the situation, farmers planted 8 million more acres of soybeans, dropping soybean market prices 33% (Riedl, 2007). Despite the price drop, farmers actually made more money through the reimbursement program. The Farm Bill promotes overproduction which saturates the market with product and artificially lowers prices.

In addition to overproduction, industrial monoculture predisposes farms to pest problems. To keep up with intensified production, farmers increased pesticide and fertilizer usage, crop density, and the number of crop cycles per season, but decreased crop diversity (Crowder & Jabbour, 2014). Overcrowding genetically uniform plants allows pests to spread through fields with relatively little resistance, compared to a more diverse array of species (“Biodiversity”, n.d.). Perhaps the most infamous account of pests sweeping through a field occurred in Ireland during the 1840s. Irish farmers grew a single variety of potatoes. In 1845, the potato late blight fungus destroyed nearly half of the potato crop, and continued to kill more and more for seven years (“Irish Potato Famine”, 2017). Just like fields during the Irish Potato Famine, modern monocultures risk infestation at any moment.

The inherent issues of pest management in monoculture systems will be exacerbated by the effects of climate change. Increases in average temperature creates a favorable environment that support larger pest populations. All insects are cold-blooded organisms, meaning that their body temperatures and biological processes directly correlate to environmental temperatures (Petzoldt & Seaman, 2006; Bale & Hayward, 2010). The reproductive cycles for pests such as the European corn borer, Colorado potato beetle, and Sycamore lace bug depend on temperature (Petzoldt & Seaman., 2006). Due to higher average temperatures, these reproductive cycles require less time (Petzoldt & Seaman, 2006). For example, the Sycamore lace bug saw drastic time reductions in egg development. At 19˚C, Sycamore lace bug eggs required 20 days to fully develop, but at 30˚C, eggs reached full maturity in 7.6 days (Ju et al., 2011, p. 4). Warmer average temperatures allow faster reproduction rates of pests, leading to a significant increase in pest populations. As pest populations grow in size, so does the threat to monoculture farming.

Higher average temperatures will not only shorten the reproductive cycles of insects, but will also limit the pest control mechanisms of winter. 2015 was the warmest winter on record, and 2016 was not much cooler. On any given day throughout 2016, states across the country experienced daily temperatures up to 12.1˚C warmer than normal (Samenow, 2017, Chart II). As a result of climate change, scientists expect milder winters to continue. The National Weather Service predicts the winter of 2017 will be consistently warmer than usual (Samenow, 2017). Insects lack a method to retain heat, forcing crop pest to develop survival strategies during winter. Insects fall into two categories, freeze-tolerant and freeze-avoiding, both which remain dormant throughout the winter (Bale & Hayward, 2010). Milder winter temperatures will have varying effects on species of crop pest, but overall a 1-5˚C increase will decrease thermal stress in both freeze-tolerant and freeze-avoiding insects (Bale & Hayward, 2010). The southwestern corn borer is one species that benefits from milder winters. During summer of 2017, farmers in Arkansas reported higher numbers of southwestern corn borers (SWCB) following the mildest winter recorded in 2016. To combat SWCB, farmers across the state deployed pheromone traps. The traps captured 300% more SWCB moths per week during the 2017 season compared to previous years. (Studebaker, 2017). Mild winters will help crop pests survive through the winter, increasing the potential for crop infestation and damage.

Warmer winters will also drive pest populations northward into uncharted territories of farmland. The United States Department of Agriculture (USDA) classifies similar climatic regions into hardiness zones to help farmers determine which crops will thrive in their area. Over the past thirty years, increasing temperatures associated with climate change have shifted hardiness zones towards the north. For example, the USDA now classifies northwestern Montana as a zone 6a instead of 5b. Crops such as ginger and artichokes can now successfully grow in this region (Shimizu, 2017). Similarly, more pests can thrive in more northern locations. Beetles, moths, and mites are moving towards the poles at a rate of 2.7 kilometers per year (Barford, 2013). Additionally, fungi and weeds are moving north at a rate of 7 kilometers per year (Barford, 2013). As these ranges grow, farmers need to develop new strategies to control pests they have never encountered. Climate change will unleash a myriad of changes in crop pests: their reproduction rate, winter survival rate and ranges all increase as temperatures rise. To adapt to these changes, farmers have many options, each with their limitations.

The most common strategy to combat pests in monoculture productions is to increase pesticide application rates per acre. Theoretically, more pesticides will kill more pests. However, that solution losing practicality due to the more subtle effects of climate change. Pesticides efficacy decreases as the global temperatures rise. Detoxification rates, or the time required to breakdown a pesticide to render it unharmful to weeds, decrease with increasing temperatures (Matzrafi et al., 2016, p. 1223). A 2016 study, for example, determined that climate change negatively affected the effectiveness of two common herbicides, diclofopmethyl and pinoxaden. At low temperatures (22-28˚C) diclofopmethyl and pinoxaden prevented the growth of any weeds. However, at high temperatures (28-34˚C) 80% of weeds survived diclofopmethyl application and 100% of weeds survived pinoxaden application (Matzrafi et al., 2016, p. 1220, 1223). Applying larger quantities may work initially, but as the overall global temperature continues to rise, pesticides will become less and less effective. Farmers will not be able to afford the quantities needed to control pests.

While current pesticides are losing their ability to kill crop pests, new, more effective pesticides are millions of dollars and years away from development. In 2016, developing a new pesticide required almost 11 years of research and carried a price tag of $287 million dollars. Technological advancements will not be developed fast enough to defend monocultures from the risk of change (“Cost of Crop,” 2016). Consequently, farmers will apply higher quantities of the same pesticide in hopes to control the pest issue. Pesticide cost estimates, under a 2090 climate change model, predict that there is a direct correlation between increasing temperatures and increasing pesticide cost for crops such as corn, cotton, potatoes, and soybeans. In some areas, pesticide usage costs will increase by as much as 23.17% by 2090, aggressively cutting into profit margins (Chen & McCarl, 2001, Table VII).

While farmers attempt to mitigate the negative consequences climate change has on pesticides by increasing usage, further issues arise. Pesticide resistance occurs following repetitious applications of the same pesticide to a field. With each pesticide application, a select few pests survive. They pass on their resistance genes to their offspring, and more individuals survive pesticide application in the subsequent generation. Eventually, the pesticide stops controlling the pest, and crop damage occurs (“How Pesticide Resistance Develops”, n.d.). Currently, there are over 500 reported cases of pesticide resistance and over 250 cases of insecticide resistance worldwide (Gut, Schilder, Isaacs, & McManus, n.d.; “International Survey”, 2017). The most infamous case of pesticide resistance occurs within Roundup Ready crops. Scientists genetically modified crops such as cotton, corn, and soybeans to tolerate glyphosate applications, which is the generic name for the common household weed-killer Roundup. Farmers can spray entire fields with glyphosate and kill everything except the crop itself (Hsaio, 2015). In the United States, 90% of soybeans and 70% of corn grown are Roundup ready crops. The prevalence of Roundup ready crops exposes the drawbacks of monoculture systems. For example, over 10 million acres of farmland in the United States have been afflicted by Roundup resistant pests such as pigweed (Neuman & Pollack, 2010). The increasing rate of Roundup resistance has the potential to dramatically interrupt food security of United States.

As climate change increases the prevalence and range of pests and decreases pesticide efficacy, American farmers will begin to lose their ability to control and maintain its current production levels. Monoculture farms expose themselves to higher risks of pest infestations as well as pesticide resistance. The best strategy for maintaining a stable food supply is to transform American agriculture from monoculture systems to sustainable, diversified farms with a variety of specialty crops. Generally speaking, the more diversified agricultural land is, the more resilient the land is to climate change and other disturbances (Walpole, et. al, 2013). Monoculture fields lack biodiversity, which hinders natural pest control. Unwanted species can spread throughout entire fields with relative ease due to an abundance of their host species and lack of natural predators. In diversified fields, however, pests encounter more resistance when attempting to invade a field; more natural pests and predators, known as biological controls, limit their movement (Brion, 2014).

Diversified farms may already have natural biological controls in their ecosystem, although they can be introduced to farms as well. Biological controls prove to be more cost effective and environmentally conscious than chemical control. Both methods take roughly ten years to develop, but biological controls are much cheaper. In 2004, it cost only two million U.S. dollars to develop a successful biological control, whereas it took $180 million U.S. dollars to develop a successful chemical control. Furthermore, biological control development are 10,000 times more successful than chemical control development, largely in part due to the directed search for biological agents versus the broader search for chemical agents. Most importantly, biological controls exhibit very little to no risk of resistance and harmful side effects, whereas chemical controls have a high risk of resistance and many side effects (Bale, van Lenteren, & Bigler, 2008).

In addition to increasing biodiversity and biological controls, diversified farms use different management practices than monoculture farms. Diversified farms tend to use less synthetic chemical pesticides per unit of production than conventional farms, according to a National Resource Council study (Walpole, et. al, 2013). They also produce more per hectare than large-scale plantations. As stated in a 1992 agricultural census report, diversified farms grew more than twice as much food per acre than large farms by cultivating more crops and more kinds of crops per hectare (Montgomery, 2017).

To mitigate the effects of climate change on American agriculture, the U.S. government must alter its agricultural policies to promote diversified farming. Removing commodity crop subsidies and reallocating that money to farms that practice diversified farming techniques will decrease overproduction in monoculture operations that rely on heavy pesticide usage. Farmers will no longer be able to produce a single crop at maximum volume and continue to make a profit because programs like the Marketing Loan Program will no longer exist. In turn, this will help alleviate pesticide resistance caused by overuse and climate change. Farmers who grow a variety of specialty crops will be rewarded for their environmental stewardship through monetary compensation, similar to how mono-cropping farms used to receive subsidies.

The United States would not be the first country to remove crop subsidies. In 1984, New Zealand removed their crop subsidy program. Like the United States, New Zealand had subsidized as much as 40% of a farmer’s income throughout the 1970s into the early 1980s (Imhoff, 2012, p. 103). Farmers took advantage of government programs similar to the Marketing Loan Program in the U.S. by producing more, therefore receiving more subsidies. During the 1984 election, however, the winning party ran a platform to remove subsidies. The elimination of subsidies from the budget caused no major food shortages like supporters of the U.S. Farm Bill claim would happen. Instead, New Zealand saw an increase in efficiency. For example, the total number of sheep fell following 1984, but weight gain and lambing productivity increased. The dairy industry in New Zealand also saw drastic increases in efficiency, bringing production costs for cattle to the lowest in the world (Imhoff, 2012, p. 104).

In addition to more efficient farms, there is an interesting aspect of subsidy removal brought light to in the New Zealand case. After the 1984 repeal, pesticide usage reduced by 50% (William, 2014). If the United States adopted a similar practice to New Zealand, but instead reallocated commodity crop subsidies towards diversified farming practice, there would be an influx of more efficient and productive farms that could feed the nation while using less pesticides.

Many states have begun to implement grant programs to promote diversified farming. In 2017, Massachusetts granted over $300,000 toward businesses and farms promoting diversification through specialty crop production. In concurrence with the USDA, Boston offered grants for projects aimed at improving Massachusetts specialty crops, which include fruits and vegetables, dried fruits, tree nuts, and horticulture and nursery products. In general, these grants support projects that help increase market opportunities for local farmers and promote sustainable production practices by giving money to diversified farms more funds. Community Involved in Sustainable Agriculture (CISA), for example, received a portion of this grant. With the money, CISA plans to provide financial support to specialty crop farmers in Western Massachusetts. The Sustainable Business Organization also received part of the grant, with which they hope to build relationships between specialty crop farmers and buyers. By removing barriers that prevent farmers and customers from doing business, the Sustainable Business Organization hopes to increase sales of specialty crops across New England (“Baker-Polito,” 2017).The United States federal government often looks upon states to make sure programs work on a smaller before the whole country takes after them on a larger scale. If the United States removes subsidies that encourage monoculture and reallocates that money towards diversifying crops on farms, American farmers could emulate programs like those in Massachusetts.  By doing so, problems associated with pests and climate change will be mitigated.

Facing the adverse effects of monoculture agricultural systems and climate change, farmers and legislature must work together to diversify farms across the United States. The current monoculture overproduces food, leading to an increased use of pesticides, even by the mere increase of agricultural land alone. On top of this, increasing temperatures associated with climate change are threatening American agriculture as well. Warmer temperatures increase pest populations and decrease the efficacy of pesticides. Furthermore, overuse of pesticides is allowing pests to develop pesticide resistance, creating a snowball effect between pests, pesticide usage, and pesticide resistance. In order to preserve food security and mitigate the effects of climate change, the United States must remove commodity crop subsidies and reallocate the funds towards diversified farming practices. Doing so will decrease the need for pesticides while increasing crop yields. The fight against climate change will prove to be a challenging process, but collaboration between farmers and government will help ease the process and create positive change.         

AUTHORS

Julia Anderson – Animal Science and Sustainable Food and Farming
Emily Hespeler – Environmental Science
Steven Zwiren – Building and Construction Technology

REFERENCES

Baker-Polito administration announces over $300,000 in grants to promote specialty crops. (2017). Retrieved from http://www.mass.gov/eea/pr-2017/mdar-awards-over-300000-to-promote-specialty-crops.html

Bale, J.S., Hayward, S.A.L. (2010). Insect overwintering in a changing climate. Journal of Experimental Biology, 213, 980-996. doi: 10.1242/jeb.037911

Bale, J. S., van Lenteren, J. C., & Bigler, F. (2008). Biological control and sustainable food production. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 761-776.

Barford, E. (2013, September). Crop pest advancing with global warming. Retrieved from https://www.nature.com/news/crop-pests-advancing-with-global-warming-1.13644

Biodiversity and agriculture. (n.d.). Retrieved from https://chge.hsph.harvard.edu/biodiversity-and-agriculture

Chen, CC. & McCarl, B.A. (2001). An investigation in the relationship between pesticide usage and climate change. Climatic change, 50, 475-487. https://doi.org/10.1023/A:1010655503471

Cost of crop protection innovation increases to $286 million per year. (April 13, 2016). Retrieved from www.croplifeamerica.org/cost-of-crop-protection-innovation-increases-to-286-million-per-product/.

Crowder, D. W., Jabbour, R. (2014). Relationships between biodiversity and biological control in ecosystems: Current status and future challenges. Biological Control, 75, 8-17. Doi: http://dx.doi.org/10.1016/j.biocontrol.2013.10.010.

DePillis, L. (2013). Farms are gigantic now. Even the “family owned” ones. Retrieved from https://www.washingtonpost.com/news/wonk/wp/2013/08/11/farms-are-gigantic-now-even-the-family-owned-ones/?utm_term=.3f7b3097e6b3

Gut, L., Schilder, A., Isaacs, R., & McManus, P. (n.d.). How pesticide resistance develops. Available at msue.anr.msu.edu/topic/grapes/integrated_pest_management/how_pest_resistance_develops

Haspel, T. (2014, February 18). Farm bill: why don’t taxpayers subsidize the foods that are better for us? Retrieved from https://www.washingtonpost.com/lifestyle/food/farm-bill-why-dont-taxpayers-subsidize-the-foods-that-are-better-for-us/2014/02/14/d7642a3c-9434-11e3-84e1-27626c5ef5fb_story.html?utm_term=.6e90c5eeb2be

How a crop sprayer works. (n.d.). Retrieved from http://lethamshank.co.uk/sprayer.htm

How pesticide resistance develops (n.d.). Retrieved from http://msue.anr.msu.edu/topic/grapes/integrated_pest_management/how_pesticide_resistance_develops.

Hsaio, J. (2015). GMOs and pesticides: Harmful or helpful? Available at: sitn.hms.harvard.edu/flash/2015/gmos-and-pesticides/.

Imhoff, Dan (2012). Food fight: the citizen’s guide to the next food and farm bill. Healdsburg, California: Watershed Media

International Survey of Herbicide Resistant Weeds. (2017). Retrieved from www.weedscience.org/.

Irish Potato Famine. (2017). Retrieved from http://www.history.com/topics/irish-potato-famine

Ju, R., Wang, F., & LI, B. (2011). Effects of temperature on the development and population growth of the Sycamore lace bug, Corythucha ciliata. Journal of Insect Science, 1-12. doi:10.1673/031.011.0116

Masterson, K. (2011). The farm bill: From charitable start to prime budget target. Retrieved from https://www.npr.org/sections/thesalt/2011/09/26/140802243/the-farm-bill-from-charitable-start-to-prime-budget-target.

Matzrafi, M., Seiwert, B., Reemtsma, T., Rubin, B., & Peleg, Z. (2016). Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification. Planta, 244, 1217–1227. doi: 10.1007/s00425-016-2577-4

Mills, R. (n.d.). A harsh reality. Retrieved from http://aheadoftheherd.com/Newsletter/2011/A-Harsh-Reality.html

Montgomery, D. (2017, April 5). Three big myths about modern agriculture. Retrieved from https://www.scientificamerican.com/article/3-big-myths-about-modern-agriculture1/

Neuman, W. and Pollack, A. (2010). Farmers cope with roundup-resistant weeds. Retrieved from www.nytimes.com/2010/05/04/business/energy-environment/04weed.html?pagewanted=all

Petzoldt, C., Seaman, A. (2006). Climate change effects on insects and pathogens. Retrieved from http://www.panna.org/sites/default/files/CC%20insects&pests.pdf

Riedl, B. (2007). How farm subsidies harm taxpayers, consumers, and farmers too. Retrieved from http://www.heritage.org/agriculture/report/how-farm-subsidies-harm-taxpayers-consumers-and-farmers-too – _ftnref14

Samenow, J. (2017, October 16). Climate change at work? Weather service calls for third straight mild winter. Retrieved from https://www.washingtonpost.com/news/capital-weather-gang/wp/2017/10/19/climate-change-at-work-weather-service-calls-for-third-straight-mild-winter/?utm_term=.60cb32e824a4

Shimizu, K. (2017). Did you know that USDA hardiness zones have changed? Retrieved from https://www.rodalesorganiclife.com/garden/hardiness-zone-changes

Studebaker, G. (2017, June 06). Southwestern corn borer alert. Retrieved from http://www.arkansas-crops.com/2017/06/05/southwester-borer-alert/

Walpole, M., Smith, J., Rosser, A., Brown, C., Schulte-Herbruggen, B., Booth, H., & Sassen, M. (2013). Smallholders, food security, and the environment. Retrieved from https://www.ifad.org/documents/10180/666cac24-14b6-43c2-876d-9c2d1f01d5dd

William, Miao. (2014) Removal of agricultural subsidies in New Zealand. Retrieved from http://archive.epi.yale.edu/case-study/removal-agricultural-subsidies-new-zealand