The Future of Sustainable Aquaculture

Atlas of The Future’s Aquapod stationed in Mexico’s Sea of Cortez

Florinda Cardoso- Natural Resources Conservation

Lauren Moura- Animal Science

Louie Huang- Building Construction Technology

Trevor Mackowiak- Environmental Sciences


From grilling it at home to ordering a fancy sushi platter, seafood is a versatile and staple protein for many diets around the world and is growing in demand as the world’s population increases. As demand increases, commercial fisheries become more industrialized, and the industry is heavily reliant on artificial aquaculture systems to raise fish such as salmon. History has shown us time and time again that industrialization often comes at the cost of our ecosystems. We do not want history to repeat itself as we tackle the issue of feeding our growing population. However, in its current state of onshore, shallow water fisheries, salmon aquaculture may be leading environmental degradation.

We all know that animals produce waste, and dealing with said waste is an integral part to any form agriculture. The same applies to the salmon raised in aquaculture operations. The waste they produce, known as effluent waste, is a combination of fecal matter and excess feed, which eventually settles on the floor causing sediment enrichment of carbon and nitrogen (Holmer et al., 2005, p. 183). Ecosystems usually have the natural ability to recycle these nutrients out of the sediment and disperse it back into the surrounding environment, though this process only works up to a certain capacity. If the rate of nutrient addition is greater than recycling in the ecosystem, the nutrients accumulate and result in negative impacts. (Holmer et al., 2005, p. 194). This affects us by contaminating our shores where we indulge in recreational activities such as fishing, enjoying the beach, etc., resulting in areas on shore being closed off from public use.

Current aquaculture systems in the United States are typically found near shore. Salmon farmers house their fish in pens that float on the surface of the water. These pens can be 90 feet across and 60 feet deep, and they can hold tens of thousands of salmon which clearly produce a lot of waste (Foley). The large volume of these near shore pens contribute to the sediment enrichment issue. With the pens reaching a depth of 60 feet, the bottom of the pens are close to the floor of the shallow waterways in which they are located. With such minimal distance between the pen and the floor of the waterway, there is little water flow to carry waste away from the vicinity and it all settles within a short distance of the pen. Over time the waste accumulates to unsustainable quantities.

The degree of pollution can be measured by total nitrogen (TN) and total organic carbon (TOC). Elevated levels of TOC and TN indicate that the body of water in question is polluted by effluent waste (Whitehead, 2018). Bannister et al. (2014) measured the TOC levels in the sediments immediately below salmon cages at near shore facilities, compared with the levels at reference locations. They concluded that TOC levels were 50% higher in the sediment at the farming locations than they were at the reference sites (Bannister et al., 2014, p. 41). The study concluded that sediment in the immediate vicinity of the cages was significantly more polluted than the sediment at the reference locations (Bannister et al. 2014).

The biggest impact that effluent waste from salmon farms has on sediment composition stems from the process of eutrophication, which has negative effects on aquatic wildlife and vegetation. Eutrophication is when a body of water receives an excess of nutrients typically from residential life, urban runoff, or agricultural practices like aquaculture operations (Bowman et al., 2017, p.  249). The excess nutrients disposed into the water from salmon aquaculture systems benefit some primary producers, allowing them to reproduce at a high volume which cause algae blooms. That said, this abnormal volume of algae is not sustainable, and the algae will eventually die. Bacteria feed on this dead organic matter and use dissolved oxygen to do so. Since there is a lot of dead algae, bacteria will feed rapidly while simultaneously using up dissolved oxygen in the water.  The decrease of dissolved oxygen leads to the death of many other aquatic organisms in the area. This change in abundance of primary producers negatively influences species higher up the food chain which will result in a decrease in populations of vegetation and various fish species (NOAA, 2018).

Eutrophication is triggered if the TN concentration of the waterway exceeds 0.80mg/L (Xu et al., 2015, p. 1051). The Changshou Reservoir in China experienced a high level of eutrophication and Sheng et al. (2006) concluded that it was due to the reservoir’s above average density of salmon aquaculture operations. They measured the concentration of TN in the reservoir during the month of October from 1999 to 2001 and found the average level it to be 2.32mg/L (Zhang et al., 2006, p. 93). This level of pollution exceeds the capabilities of the ecosystem to recycle these nutrients, and eutrophication became increasingly likely.

While eutrophication may seem like soley an environmental issue, it has the potential to cause major economic losses. Eutrophication causes fish kills, which can decrease the fish stock significantly or, in the most extreme cases, removes them from ecosystem entirely. Such an event happened in Hong Kong in 1998. Eutrophication wiped out 90 percent of the entire stock of Hong Kong’s fish farms and resulted in an estimated economic loss of $40 million USD (Eutrophication and Hypoxia Impacts). Similarly, in the 1980’s the Black Sea ecosystem was in decline due to eutrophication. The increase in nutrients combined with fairly shallow water lead to massive fish kills. This left the ecosystem susceptible to disturbances which ultimately lead to extensive losses in Turkish fishing industries (Bowman et al., 2017, p. 250). In order to protect the economic performance of nations which rely on aquaculture, eutrophication must be kept to a minimum.

If aquaculture farms are planned with the recycling capacity of the ecosystem in mind, nutrient enrichment can be greatly diminished. While conventional aquaculture practices produces waste that results in nutrient enrichment of sediment (Carroll et al., 2003, p. 173), an emerging practice known as offshore aquaculture could be the solution. Offshore aquaculture is the practice by which cages made up of nets are placed 3-200 miles offshore (NOAA, 2016) in depths ranging from 82ft-328ft (Kapetsky, Aguilar-Manjarrez, & Jeness, 2013, p. 3). As depth of the waterway increases, the rate of the current does as well. As the rate of the current increases, there is greater dispersion of organic nutrients (Gentry et al., 2016). Carroll et al. (2003) recorded the current speeds at varying depths of salmon farms and found that at depths of less than 82ft the current speed was less than 1.2in/s, depths between 82ft and 164ft the current speed was 1.6in/s-2.4in/s, at depths between 164ft and 246ft the current speed was 2.8in/s-3.9in/s, at depths of greater than 246ft the current speed was 3.9in/s-9.8in/s. They measured the TOC at the varying classes and found that the higher the depth and current speed the lower the TOC. For example, salmon farms at depths less than 82ft had TOC levels between 34mg/g and 41mg/g, while farms at depths greater than 246ft had TOC levels of less than 20mg/g (Carroll et al., 2003, p. 169). By planning the facilities offshore, and therefore at greater depths, water currents around the facilities are much greater than when compared to inshore farms . This allows the settling of effluent waste to spread out over a larger area, thus keeping the sediment composition directly below the farms from becoming heavily polluted (Gentry et al., 2016, Carroll et al. 2003). By increasing the dispersal range of effluent waste, biological life around the farms are better able to naturally recycle the nutrients. With less polluted waters and adequate dissolved oxygen, all fish are able to live healthier lives.

In order to raise fish in open waters, designers have to make a cage that is able to withstand the force of open ocean waves (Arnold, 2006). Companies like InnovaSea have achieved this and already began capitalizing on the offshore structures, their SeaStation and Aquapod (Innovasea, n.d) offer two options for aquaculture farmers. The Aquapod is a spherical arrangement of triangular net panels fastened together that allows the pod to withstand a variety of conditions and hold a diversity of species (Innovasea, n.d).  This fish farm pod looks like something out of a sci-fi movie, whereas the SeaStation appears to be a more conventional and cost effective solution. China recently constructed a farm similar to InnovaSea’s SeaStation, the structure is 125 feet high, holds 1.76 million cubic feet of volume, and can generate 1,500 tonnes of salmon per season (every 2 years) (Tang, 2018). The cage is planned to be installed in the Yellow Sea, 130 nautical miles east of Rizhao (Tang, 2018) and the depth can be adjusted from 13-164 feet accordingly to optimal temperature conditions for the salmon and effluent waste dispersal (Tang, 2018). Estimates show that offshore aquaculture in the Yellow Sea will support a $15.7 billion industry (Tang, 2018) and will ease pressures on near shore farming (Tang, 2018).

The United States was ranked number 1 in global offshore aquaculture development potential by the Food and Agriculture Organization for The United Nations (Kapetsky, Aguilar-Manjarrez, & Jeness, 2013, p. 26) The ranking is on the basis of ocean areas encompassing 2-300 miles away from the shoreline of the country’s land masses with suitable depths, current speeds, and cost effectiveness based on travel time and accessibility (Kapetsky, Aguilar-Manjarrez, & Jeness, 2013, p. xv). We urge that the United States develops a process for developing offshore aquaculture in our homewaters. Failure to set up the proper framework for offshore aquaculture development will result in loss of a massive economic opportunity, damage to the environment, and a higher potential for unregulated seafood. Allowing effluent waste to disperse in offshore waters will spread the waste in a greater area rather than it being condensed onshore. You may now be thinking of the popular propaganda slogan from the 1970’s, “the solution to pollution is dilution.” In many cases this slogan is inaccurate but in this case it can be taken with a grain of salt. With the waste from salmon aquaculture systems spread over a greater area, a greater amount of biological life is able to naturally recycle the contaminants out of the water system.

In 2015 the average United States citizen ate 15.5 pounds of fish (Gewin, 2017) and in 2016 the United States imported more than 2.5 million tons of edible fish (Lester et al., 2019) that amounts to 90% of the market value, half of that coming from aquaculture in other countries (Lester et al., 2018). The U.S. exports half of its wild caught seafood (Knapp & Rubino, 2016, p. 214) though even if it did not export, the supply would be insufficient for the domestic market (Knapp & Rubino, 2016, p. 214). The United States fish consumption has gone up while its amount of catch has remained the same (Gewin, 2017) this has become a global trend. The World Bank predicts that by 2030, two-thirds of fish eaten will have come from aquaculture (GreenBiz).  The United States is home to the highest area of cost effective land for offshore aquaculture (Kapetsky, Aguilar-Manjarerez, & Jeness, 2013, p. 26) when compared on a global scale and should seek to use it to its advantage.

To ensure the development of American aquaculture movement is sustainable, streamlining of the regulatory process for establishing deepwater aquaculture operations must be prioritized. This makes it easier for businesses to establish these farms from the beginning. Offshore aquaculture operates 3-200 miles offshore (NOAA, 2016) while the federal Exclusive Economic Zone encompasses 3-200 miles offshore (Lapointe, 2013, p. 1), this means that offshore operations occur in federal waters, here is where things become cloudy as to who is responsible for regulating offshore aquaculture.

In order to allow the development of offshore aquaculture in the United States to create a sustainable source of food, the permitting process has to be streamlined to allow easy entrance into the market. There have been previous attempts to streamline the process, the National Offshore Aquaculture Acts of 2005 and 2007 which both failed to pass in congress (Lester et al., 2018). These acts granted the Secretary of Commerce the right to establish a permitting process for the development of offshore aquaculture in the U.S. waters (Congress, 2007). Due to this the current process for entering the offshore aquaculture is unclear and unstable, which scares investors away from what could possibly be an incredible investment. The federal government allocated NOAA permission to grant permits for up to 20 offshore aquaculture farms in the Gulf of Mexico (Gewin, 2018) in January of 2016. Though in 2018 the permits were ruled unlawful in court because they go beyond NOAA’s legal reach (Center for Food Safety, 2018).  When writing the permitting application, NOAA described the offshore aquaculture farms as fishing, which is their responsibility, though plaintiffs argued that aquaculture is more farming than fishing (Center for Food Safety, 2018). These court results promulgated that under current federal law, the development of offshore aquaculture in the United States is not permitted (IntraFish Media, 2018). This means a new regulatory process is imperative to allow potential offshore aquaculture farmers to develop their farms in the United States’ waters.

There are three government agencies involved in the offshore permitting process (Gewin 2017), including the National Oceanic and Atmospheric Administration (NOAA) (NOAA, 2017), U.S. Army Corps of Engineers (USACE), and the U.S. Environmental Protection Agency (EPA) (NOAA, 2017). NOAA has assumed the role of permitting any offshore aquaculture farm, currently in The Gulf of Mexico. In 2016 NOAA was alloted to permit 20 offshore aquaculture operations (NOAA, 2018), though in 2018 the permits were repealed before even being distributed (IntraFish Media, 2018). The USACE grants permits that protect the navigable waters of the U.S. (NOAA, 2017) while the EPA is totally different, they permit the discharge of pollution from an offshore aquaculture operation (NOAA, 2017). A potential offshore aquafarm might meet the USACE and EPA qualifications, though it is still not allowed to start its operations until NOAA receives approval to distribute permits.

There are also four government agencies involved with the authorization of offshore aquaculture operations. This includes the Bureau of Ocean Management (BOEM), the Bureau of Safety and Environmental Enforcement (BSEE), the U.S. Coast Guard (USCG), and the U.S. Fish and Wildlife Service (USFWS) (BOEM, 2017).

One alternative for offshore aquaculture is to repurpose old fossil fuel rigs which provide the benefits of: the availability of large volumes of good-quality water, reduced user conflicts, increased employment, and decreased reliance on foreign imports (BOEM, 2007), but require cooperation from all four agencies. The BOEM authorizes the right to use for offshore operations that use an existing federal outer continental shelf facility (NOAA, 2017). The BSEE authorizes proposed activities that convert oil and gas facilities to a new purpose (NOAA, 2017). BSEE started an initiative in the mid 1980’s called the Rigs to Reef program to repurpose old fossil fuel rigs and can be used to promote offshore aquaculture (Rigs to Reef, n.d). While the U.S. Coast Guard authorizes that the proposed facilities will have the correct lights and signals that allow for safe maritime navigation (NOAA, 2017). The U.S. Fish and Wildlife Service authorizes that proposed actions are in compliance with all fish and wildlife laws including The Fish and Wildlife Conservation Act and the Endangered Species Act (NOAA, 2017). The difficult part for the company is that every agency has different permit applications and periods. Companies could possibly receive approval from one agency, but get denied by another for a specification, extending the permitting process and making it complicated.

The proposed offshore aquaculture policy is a win-win in the political system, the Trump administration has already expressed in favor of expanding aquaculture in America (Gewin, 2017). Not only is offshore aquaculture a potential big money business for the United States and a chance to reduce our reliance on foreign imports, by moving the farms away from zones near the coast that harbor habitats that are more susceptible to damage from aquaculture like coral reefs (Gentry et al., 2016) and mangrove forests (Porchas & Cordova, 2012) the environmental impacts are far less than on-shore farms (Lester et al., 2018). With proper spatial planning, the offshore farms will have minimal environmental impact and a high yield of fish (Grewin, 2017) which appeals to both the conservative and liberal voters, in the sense that it is environmentally friendly and generates revenue.

With all this being said offshore aquaculture is not the only option for raising farm fed fish while reducing environmental impacts. Alternatives like recirculating aquaculture systems are either on-shore or on-land and physically separate the fish farm from the source water with a tank (Cermaq, 2012). The water is pulled from the source (typically the ocean) and circulated through the tank, when water exits the tank it passes through a filtration system that removes effluent wastes (Cermaq, 2012).  Though other problems arise from these systems like the battle for land use and the intense amount of energy needed to power these systems.

More than 40% of the world’s population lives no more than 62 miles away from the coast (Turcios & Papenbrock, 2014, p. 837) which must be planned to allow for the best use of space (Holland, 2010). In Croatia which has been praised for its successful spatial planning policy (Holland, 2010) the beautiful beaches have caused the rapid expansion of the tourism industry, taking away potential land for aquaculture farms, leading farmers to look offshore (Holland, 2010). While beaches are becoming crowded with umbrellas and aquaculture a massive area of the world is being ignored; the areas 3-200 miles off coasts. A study by the University of California-Santa Barbara found that if aquaculture were developed in only the most productive areas of the ocean, then the same amount of seafood that is currently produced annually, could be produced in an area the size of Lake Michigan (Seifert, 2017). Not only are these recirculating systems taking up useful land space, they are using an immense amount of energy to keep the operate the systems making them very costly.

Recirculating aquaculture systems have the highest energy use requirement per kilogram of fish when compared to that of other methods in the U.S. Pacific Northwest at 567 MJ/kg (Kim & Zhang, 2018, p. 2) compared to 117 MJ/kg of a conventional flow system (Kim & Zhang, 2018, p. 2). The main contributors to the energy consumption are the circulation, aeration, and filtration of the system’s water  (Badiola et al., 2018, p. 10). The aeration of the tanks typically amounts for 20% of the total energy consumption for the farm’s production cycle (Badiola et al., 2018, p. 60) whereas in an offshore aquaculture operation, no additional aeration of the water is needed because operating in deeper waters has shown to not even change the dissolved oxygen levels in the Gulf of Maine (Holmer, 2013, p. 142) due to the high volume of water naturally passing through the system. In addition to aerating the water, the water also has to be passed through multiple filter systems which takes hydraulic pressure, requiring more energy from the circulation pumps to operate during a normal backwashing cycle (which is how the filter is cleaned) a filter will use five times as much energy (Badiola et al., 2018, p. 60).

The waste that is gathered from these filters has to be either repurposed or disposed to prevent the introduction of these wastes into the water,  this again is very costly and energy intensive. Recirculating aquaculture systems reduce nutrient loading in the sediment by filtering out effluent waste, though the process is energy intensive and produces concentrated effluent waste which then must be dealt with. Because of this reason investors have only seen a 5% return on investment in recirculating aquaculture systems (Cermaq, 2012) as compared to 52% return on investment in net pen aquaculture (Cermaq, 2012). All of these factors make offshore aquaculture (a net pen system) a more cost effective and energy efficient manner of reducing the effects of nutrient loading from aquaculture.

Seafood consumption is steadily increasing not just in the United States, but globally. By 2030, ~66% of seafood will come from aquaculture production (Gewin, 2017). The United States only acquires a small fraction of its seafood from domestic production, and 50% of the seafood that is imported comes from some form of aquaculture (Knapp & Rubino, 2016, p. 214). It is clear that the reason Americans have not began establishing domestic aquaculture is not because they do not want to eat farmed fish, but because there are regulations in place that make it far too difficult to do it in the first place. The United States is ranked number 1 in potential for offshore aquaculture development (Kapetsky, Aguilar-Manjarrez, & Jeness, 2013, p. 26) and should immediately look to streamlining the permitting process for offshore aquaculture get at this opportunity.



Alternative Energy Programmatic EIS. (2007, October). Retrieved from

Arnold, C. (2006, March 22). Feeding the World with Deep-Sea Fish Farms. Retrieved from

Bannister RJ, et al. (2014). Changes in benthic sediment conditions under an atlantic salmon farm at a deep, well-flushed coastal site. Aquac Environ Interact. 5(1):29-47.

BOEM, BSEE, NMFS, USACE, US Coast Guard, EPA, & FWS. (2017, February 06). Memorandum for Understanding for Permitting Offshore Aquaculture Activities in Federal Waters of the Gulf of Mexico. Retrieved from

Bowman, William D., et al. Ecology. Sinauer Associates, Inc. Publishers, 2018.

Carroll ML, Velvin R, White P, Cochrane S, Fieler R. Organic enrichment of sediments from salmon farming in norway: Environmental factors, management practices, and monitoring techniques. Aquaculture. 2003;226(1-4):165-180.

Cermaq., Closed Containment  (2012, January 11). Retrieved from containment_2012.11.01.pdf?MOD=AJPERES

Deacutis, C. (n.d.). Impacts. Retrieved from

Energy use in Recirculating Aquaculture Systems (RAS): A review. (2018, March 20). Retrieved from

Eutrophication and Hypoxia Impacts. (n.d.). Retrieved April 24, 2019, from

FAO. (2013). A global assessment of offshore mariculture potential from a spatial perspective. Retrieved from

Foley, D. (n.d.). Infographic: Fish Farming [Pamphlet]. Oceana.Foley, D. (n.d.). Infographic:

Fish Farming [Pamphlet]. Oceana.

Gentry, R.R., et al. (2016, December 24). Offshore aquaculture: Spatial planning principles for

sustainable development. Wiley Online Library.

Gewin, V.  (2017, April 20). Is the United States ready for offshore aquaculture? Retrieved from

Gewin, V. (2017, May 04). The tide is changing for offshore aquaculture. Retrieved from

Holmer, M., Wildish, D., & Hargrave, B. (2005, July 05). Organic Enrichment from Marine Finfish Aquaculture and Effects on Sediment Biogeochemical Processes. Retrieved April 24, 2019, from

Holland, J. (2010, June 23). Aquaculture’s battle for space. Retrieved from

InnovaSea. (n.d.). Retrieved April 18, 2019, from

Kim, Y., & Zhang, Q. (2018, June 18). Modeling of energy intensity in aquaculture: Future energy use of global aquaculture. Retrieved from

Knapp, G., & Rubino, M. C. (2016). The Political Economics of Marine Aquaculture in the United States. Reviews in Fisheries Science & Aquaculture, 24(3), 213-229. doi:10.1080/23308249.2015.1121202

Knockaert, C. (n.d.). Possible consequences of eutrophication. Retrieved from

Lapointe, G. (2013, March). NROC White Paper: Overview of the Aquaculture Sector in New England. Retrieved from

Lester, S. E., Gentry, R. R., Kappel, C. V., White, C., & Gaines, S. D. (2018, July 10). Opinion: Offshore aquaculture in the United States: Untapped potential in need of smart policy. Retrieved from

NIFA (2019) Find. Apply. Succeed. (n.d.). Retrieved from

NOAA. (n.d.). Offshore Aquaculture and the Future of Sustainable Seafood. Retrieved from

NOAA Sea Grant (2019). Find. Apply. Succeed. (n.d.). Retrieved from

NOAA. (2017, August). A Guide to the Application Process for Offshore Aquaculture in U.S. Federal Waters of the Gulf of Mexico. Retrieved from

NOAA. (2018). What is Eutrophication? National Oceanic and Atmospheric Association. U.S.

Department of Commerce.

Offshore Aquaculture: What’s All The Fuss About? (n.d.). Retrieved from

Rangeland Soil Quality—Water Erosion. 2001. USDA.

Rigs to Reefs. (n.d.). Retrieved April 24, 2019, from

Smee, B. (2018, May 11). Linc Energy fined $4.5m for pollution amounting to ‘ecological vandalism’. Retrieved from

Soil Erosion Case Study: Meadowview Open Space. (2016, November 30). Retrieved from

Tang, F. (2018, May 05). Chinese fish farm launches ‘world’s biggest’ deep-sea salmon cage. Retrieved April 18, 2019, from

United States., Congress., Senate. (2011). Offshore aquaculture: Challenges of fish farming in federal waters: Hearing before the Subcommittee on National Ocean Policy Study of the Committee on Commerce, Science, and Transportation, United States Senate, One Hundred Ninth Congress, second session, June 8, 2006. Washington: U.S. G.P.O. Retrieved April 18, 2019.

University of California – Santa Barbara. (2017, August 14). Tiny fraction of oceans could meet world’s fish demand: World’s oceans possess vast, untapped potential for sustainable aquaculture, say marine scientists. ScienceDaily. Retrieved April 24, 2019 from

U.S.Cong., House- Natural resources; Ways and Means; Foreign Affairs. (n.d.). H.R.2010 – National Offshore Aquaculture Act of 2007 (C., Author) [Cong. Bill from 110th Cong.].

Victory! Court Shuts Down Offshore Aquaculture in Gulf of Mexico. (2018, September 25). Retrieved April 18, 2019, from

Whitehead, P. (2018, March 27). Total Organic Carbon (TOC) and its Measurements. EGLA Labwater. Retrieved from

Whittle, P. (2018, February 20). Aquaculture project could lift status of US salmon farming. Retrieved from

Victory! Court Shuts Down Offshore Aquaculture in Gulf of Mexico. (2018, September 25). Retrieved from

Xu, H. et al. (2015). Determining Critical Nutrient Thresholds Needed to Control Harmful

Cyanobacterial Blooms in Eutrophic Lake Taihu, China. Environmental Science &

Technology. 49 (2), 1051-1059. DOI: 10.1021/es503744q

Zhang, S. et al. (2006). Impact of aquaculture on eutrophication in Changshou Reservoir.

Chinese Journal of Geochemistry.


We need a nationwide plastic ban

Cassandre Adelson, Ava Bordage, Jordan Nunley, Kaitlyn Parker

A recent study found that 92% of Americans over the age of 6 test positive for plastic-based chemicals in their bodies (Jackson, 2015). This shocking statistic is due to the tremendous amount of plastic litter introduced into the natural environment from humans improperly disposing of their plastic materials. Continue Reading

The Impacts of Climate Change on United States Agriculture


(Drip Irrigation)

Ryan MacMullan- Plant and Soils Science Major, Jonevan Pomeroy- Building Construction and Technology Major, Austin Ford- Forestry Major


Between 1910-1930, farmers were pressured to plow millions of acres of grassland in the Great Plains as a result of World War I and an increased food demand for soldiers and their families (History, 2009a). Advanced agricultural practices such as crop rotations and genetically engineered crops weren’t yet applied to the crops, and farming practices revolved around surface irrigation which relies upon precipitation and the natural flow of water to their crops via channels dug into the earth and only had water use efficiencies of 50-70% (History, 2009a; Bjorneberg, 2013, p. 2). This was done without the knowledge of the environmental consequences and in a desperate attempt to meet the food demands of war. (Lee & Gill, 2015). The slogan “the rain follows the plow” was a common phrase that farmers used in hopes of a plentiful crop season (Lee & Gill, 2015). However, this saying was incredibly far from the truth and their excessive plowing and wasteful irrigation practices actually resulted in decreased agricultural yields and disruption to the environment. Continue Reading

Solutions to Unsustainable Salmon Farming Practices

Onshore aquaculture is a sustainable alternative to open-net salmon farming, where salmon are contained in nets placed directly into the ocean.

Hannah Brumby: Geology

Justin Parker: Building & Construction Technology

William LaVoice: Natural Resources Conservation

Gabbie Furtado: Animal Science

In the last twenty years salmon consumption has skyrocketed, increasing by nearly 250% (FAO). Today the bulk of production comes from salmon farms (OurWorldInData). The EU, the US, and China make up over seventy percent of the global market for Atlantic salmon and consumption is increasing in each place (Williams 2017). Unfortunately salmon farming has proven to be both economically and environmentally unsustainable. Yet production has not stopped due to the high demand. In order to meet people’s demand for salmon, a transition to more sustainable farming practices needs to take place.

Continue Reading

Green Roofs: The Future of Combating UHI

Green roofs add a beautiful shade of natural green to a dull urban environment.


Skyler Hall – Plant, Soil, and Insect Sciences

Joseph Lyons – Building Construction Technology Sciences

Anthony Tiso – Pre-Veterinary Sciences

University of Massachusetts, Amherst



HOOK!!!!! Located in Southern California, Los Angeles [LA] is one of the most popular tourist destinations in the United States and draws in millions of people annually. In 2016 alone, nearly 46 million people visited the city (CBS Los Angeles, 2016). LA is the second largest city in the America, rivaled only by New York City. According to Population USA (2019), in the most recent census survey, Los Angeles has a resident population size of roughly 4 million people and it is estimated that by the summer of 2019 it could potentially rise well over that number. It is predicted that by 2050, the population will have increased by 3.5 million people (World Population Review, 2019). This ever increasing population of the city has a significant impact on cities and the urban environment. Increased buildings lead to higher temperatures through trapped carbon emissions, lack of vegetation, and decreased albedo. All of these factors lead to the Urban Heat Island Effect [UHI]. The urban/city area is significantly warmer than the  surrounding suburban and rural areas. In some cases it was noted that temperatures in major cities could be as much as 22℉ hotter in the evenings compared to the surrounding areas (North Carolina Climate Office, 2019). Continue Reading

Proposal to mitigate the effects of the beef industry on global warming

Jack Reid – Natural Resource Conservation/Urban Forestry

Ashley Lees – Sustainable Food and Farming

Anna Marco – Animal Science

Anders Salmonsen – Building Construction Technology

Global warming is one of the biggest problems facing our planet currently, and this issue will only continue to create more negative impacts in the future. Our world wide industries and societies are rapidly creating greenhouse gases that increase the rate at which our atmosphere and environments are changing. Through things such as the burning of fossil fuels to create electricity or the use of gasoline in cars, humans are emitting immense amounts of greenhouse gases such as carbon dioxide and methane that contribute to this problem (Denchak, 2016). There is a source of these greenhouse gases that is often overlooked. That source is the practice of raising cattle for beef and dairy products. Agriculture activities in the United States are responsible for 7.9% of Total Greenhouse gas emissions and cows are the largest contributor (Stackhouse-Lawson, et. al., 2015). The dairy and beef consumption in the United States directly relates to global warming due to methane emissions that occur as a byproduct of this industry (Hovhannisyan & Grigoryan, 2016). The rate at which global warming is increasing is alarming and something must be done about it. One way to reduce methane emissions is to focus on the demand for beef and dairy products and how we can decrease this demand. Continue Reading

Water for Farms

Thomas O’Donoghue….Building and Construction Technology

 Noah Wartenberg……..Building and Construction Technology

Heidi Mannarino……….Environmental Science





                                               Flood Irrigation


                                          Drip Irrigation

It’s a dusty, breezy day on Jack Durham’s sweet corn farm in Central Alberta, Canada. His family has been on this land for over 100 years. Outside, what seems like miles of plastic piping delivers slow drip water to the crops. With the land unusually dry and the wind blowing swirls of dirt around, his plants remain hydrated. But this was not always the system.

Jack has two framed photographs on his wall, both next to a window looking out on his land. One photo features the fields checkered with long, flooded trenches. The other photo features the same fields with giant overhead sprinklers, showering the crops with water. Jack carefully recalls each major shift in how his crops get water. With each major shift came a massive decrease in how much water he used.  

Here in Southern Canada, the agriculture industry is heavily dependent on meltwater from the mountains. Climate change induced temperature warming has been causing mountain snowpack to melt early, leaving less water available during the growing season. Resultantly,  many Albertan farmers have been seeing crop yield losses, especially in the last decade. However, because of their higher water efficiency, the Durham farm is able to remain as productive as ever. Watching some of his neighbors struggle has been hard, but Jack is sure he made the right choice in upgrading to such an efficient system. A choice, he claims, would have been impossible without major financial help provided by the provincial Albertan government.(source)

Continue Reading

LdMNPV and the Management of Gypsy Moths

Gypsy moth larvae consuming leaves

William Coville – Environmental Science

Julianne Foren – Animal Science

Catherine George – Horticultural Science

John Mazzone – Turf Grass Science and Managment


In the late 1860’s, a French scientist brought the gypsy moth to Massachusetts from Europe in the hopes of breeding disease-resistant genes into silkworms to improve and expand the silk industry (Liebhold, 2003). Due to his incompetence, a couple of his gypsy moth subjects made their way into the New England forest and found that they could live, breed, and thrive there. The carelessness of one scientist resulted in a gypsy moth invasion that persisted over the last hundred years and encompasses various ecosystems throughout the U.S. and Canada. Lymantria dispar dispar, known as the gypsy moth, is an invasive species that acts as a major pest of hardwood trees, particularly the dominant oak and aspen (Liebhold, 2003). As an example, a red oak that lies at the entrance of Quabbin Park in Belchertown, MA has been taken down due to it being mostly dead from gypsy moth defoliation (Miner, 2018). Iconic trees in parks around the country are not spared from the damage of gypsy moths and once enough damage sets in the trees are lost from the community. Not only does the gypsy moth cause an an aesthetic decline among these once beautiful hardwood trees, but they also play the role of the small beginning in a larger catalyst effect. They cause severe defoliation among the trees they feed on and cause harm to native species as well. One scientists economic greed and thoughtless actions have resulted in ecological destruction that has lasted and will continue to last well beyond his lifetime.

Continue Reading

Reducing Cows Environmental Impact

Bessie producing methane

Andreas Aluia- Forestry

Sean Davenport- Environmental Science

Haley Goulet- Animal Science

Picture this. Miles of rolling green fields sprawled out in front of you, dappled in hundreds and hundreds of black and white cows. Their heads low as they graze the young grasses covered in early morning dew. Behind you the farmer is preparing the barns for the cows return in the afternoon. Each breath of air making you feel renewed with the peace and clean air of the countryside. But how clean is it?


Continue Reading

Massachusetts’ Green Wave

A jar of weed grown in a commercial facility.

The mayor Holyoke, a small city in Western Massachusetts, is hoping he has found the golden ticket that will save the area’s economy, and it comes in the form of legalized pot. Effective December 15, 2016 Massachusetts became the first East Coast state that will allow the sale of recreational marijuana and many cities are hoping the new industry will jobs and money to poorer areas (Massachusetts Legislation, 201). When recreational marijuana was first made available in Colorado there was a large spike in commercial cultivation facilities to keep up with the demand. The first week that marijuana was legal in Colorado stores sold over $14 million worth of recreational marijuana and this number continues to grow as more user adopt the practice (KansasCityFed). By the end of 2016 Colorado had given out nearly 500 permits to sell recreational marijuana and 700 permits to grow it, resulting in $1.3 billion dollars worth of marijuana being sold (KansasCityFed). All of the marijuana sold in Massachusetts needs to be grown in Massachusetts which has resulted in 172 recreational cultivation license applications being submitted to Massachusetts’ cannabis control board from all across the state, showing that Mass is on track to follow Colorado’s cannabis boom (CCC).

These facilities are almost exclusively indoor cultivation facilities that are housed in warehouses or greenhouses. Indoor grow facilities are utilized because of their ability to deliver a high yield of crops year round while protecting plants from any adverse environmental conditions and keeping the grow area within precise environmental conditions (Baptista et al., 2017). Indoor grow facilities produce as much as ten times more crops compared to traditional farms, making them an obvious choice for growing expensive crops like marijuana (Barbosa et al., 2015). In Massachusetts indoor grow facilities are used almost exclusively for large operations because of the long winters and short growing season that would drastically impact the growers overall yield. Consumers also demand a very high quality product when they purchase marijuana from a store and these products can only be grown in intensly regulated facilities. Without the use of indoor grow operations marijuana cultivators would not be able to produce enough high quality product to yield a reasonable profit.  The major problem with controlled environment agricultural is the reliance on outside energy sources and the effect this energy consumption can have on the environment (Sanjuan-Delmás et al., 2017).

However, greenhouses use significantly more energy than more traditional open air farms. The amount of energy utilized fluctuates based on the individual greenhouse because of differences seen in technology and construction, but it is inevitable that greenhouses will use more energy than traditional open air farms due to the equipment needed to produce a high yield of crops. A recent study found that greenhouses use as much as 160.5 MJ/kg while more traditional outdoor growing options like open air farming only uses 0.8-6.9 MJ/kg (Ntinas et al., 2016). Marijuana cultivation is considered to be one of the most energy intensive industries in America today (Warren 2016). In the United States 1% of the entire country’s energy use is spent on marijuana cultivation  (Magagninia 2018). This can rise to 3% in cannabis rich states like California (Magagninia 2018). Most industrial grow facilities have large, overhead lights that replace the sun, bring water straight to the plants in the absence of rain, maintain precise air quality through the use of air filters and dehumidifiers. (NCLS). Each of these necessary tools needs a large amount of energy to function at peak performance.

To grow a high quality product facilities must employ very specialized lighting units that provide a specific wavelength of light to optimize production. Different lighting systems can produce very different effects on the plants that can change the height of the plant, the amount of product produced, and the amount of THC and CBD found in the marijuana (Magagninia 2018). Lighting can account for 76-86% of the entire facility’s energy usage, which toals 2283 kW/hr per kilogram of marijuana produced (Arnold 2013). Unfortunately, cutting back on lighting isn’t an option either. Because of marijuana’s intense cultivation needs any compromise in lighting quality can gravely impact the amount of product yielded and the quality of the product.

Another large consumer of energy within an indoor grow facility is the transportation of water to the facility and the method utilized to water the plants.  Most facilities utilize hydroponic systems because of their ability to maximize crop yield while minimizing the amount of water being used (Barbosa 2015). However, the addition of hydroponic systems can increase the amount of energy needed to effectively operate an individual greenhouse (Cannabis Control Commision). Extra water handling uses approximately 173 kW/h for every kg of cannabis yielded (Mills, 2012).

Large marijuana facilities are forced to use ventilation systems like air scrubbers or charcoal filters in their facility to help mitigate noxious gases or any other fumes associated with cultivation (Marijuana Facility Guidance 2016). These machines help remove any impurities from the air while maintaining safe working conditions for workers who will be subjected to the fumes all day. When studied these machines consumed 1848 kW/h for every kg of cannabis yielded (Mills, 2012). Despite their large energy draw, ventilation systems are imperative for maintaining a safe work environment while insuring the cultivation plants are not dumping a large amount of noxious fumes into the surrounding area.

Marijuana is a very climate dependant plant that requires specific temperatures to grow as productive as possible. Most facilities are need to use air conditioners for a large part of the year because of the immense amount of heat being produced by the equipment being used, however, in Massachusetts facilities would also need to provide heat in the winter. Without air conditioning the plants would overheat which can impact the amount of product yielded and they could even be at risk of dying. Massachusetts’ winters are so cold that it would necessitate additional heat sources be provided or the plants could again face decreased yields or death. It was shown that the average facility uses 1284  kW/h for every kg of cannabis yielded on air conditioning and 304 kW/h for every kg of cannabis yielded on heating (Mills, 2012).

When a system is continuously using large amount of energy the waste product of these systems needs to be considered.  The introduction of greenhouse gases into the atmosphere is a leading cause of climate change that has been proven to warm the earth, resulting in melting glaciers, rising sea levels, warmer oceans, and more natural disasters (NASA). Indoor agriculture’s high energy needs often results in a high amount of carbon dioxide being produced as waste  (Sanjuan-Delmás et al., 2017). A 70 m2 greenhouse heated solely by natural gas produced 2.9 kg CO2 eq./kg more than one of the same size that was heated by natural gas supplemented by solar power (Hassanien et al., 2017). Most marijuana grow operations do not follow organic production standards which have a 35%-45% lower carbon footprint than organic farming (Bos et al., 2014). This carbon being pumped into the environment can negatively impact the Earth by promoting climate change. Thankfully, there are renewable sources of energy that can be harnessed that have a much smaller carbon footprint while still providing a quality source of energy.  

Large Legal Marijuana Farm Professional Commercial Grade Greenhouse Filled With Mature Budding Cannabis Indica Plants

Massachusetts has been slowly working towards more eco friendly energy solutions like energy that comes from solar panels, nuclear reactors, and natural gas. In 2017 68% of Massachusetts’ energy was produced by natural gas and only 4% of its energy from coal (eia). Solar panels are also gaining popularity and 1,867 megawatts of solar power was installed in Massachusetts in 2017 (eia) . Carbon emissions were also decreased by 19 percent from 1990 t0 2015 ( However, 27% of Massachusetts heating needs still come from oil (eia). Such a large and energy intensive industry that requires a large amount of heat could jeopardize Massachusetts goals to reduce carbon emissions and increase clean energy usage. One popular solution is the use of photovoltaic cells, also known as solar panels.  

 The use of technologically advanced solar panels would help offset the shortcomings of greenhouse growing maintaining a high agricultural yield without contributing to global warming by releasing greenhouse gases. When solar panels are placed on an area that covers  20% of the roof of a greenhouse it can replace 20% of the energy necessary to power the grow site (Hassanien et al., 2017). In Massachusetts standard solar panels are able to produce approximately 1130 kWh of energy per year (Solar-Estimate). A large marijuana cultivation facility can use an upward of 210,000 kWh of energy per year, which would require approximately 185 panels to completely run the facility off of energy generated by panels ( Energy use is directly linked to size and not all facilities are as large and energy dependant; they can be as small as a few hundred square feet or as large as 100,000 square feet (Cannabis Control Commision).  Not only can greenhouse energy production be supplemented with renewables, but renewables could possibly meet all of a greenhouse’s energy demand. Previous marijuana grow sites have been able operate while only utilizing energy from solar arrays, making it likely that greenhouses in Massachusetts could do the same (Barok 2017).

By adding solar panels to grow sites the amount of fossil fuels  used will drop dramatically which will also combat the amount of carbon dioxide being produced which will ultimately help slow the rate of climate change. When compared to greenhouses that relied on fossil fuels alone to produce their electricity demand, ones that supplemented production with solar panels had a 29% lower carbon footprint (Ntinas et al., 2016). The potential for greenhouses to run largely off of solar energy while still producing a high yield of crops will result in a large cut to each facilities carbon footprint. The 240 solar panels they installed generated 440,000 kWh of energy in five years, which would have cost $88,000 and was more than enough to power the facility throughout the year (Barok 2017). A solar array of this size would make almost two times the amount of energy needed for an average facility that only consumes roughly 210,000 kWh of energy per year ( Just one building was able to save 550,000 pounds of carbon dioxide from being released into the atmosphere (Barok 2017).

Often times when considering the amount of energy used by indoor grow facilities it is tempting to offer solutions that involve less intensive cultivation practices that often use less energy. By using open air farming practices a cultivation site could use close to 23 times less energy than indoor growing facilities (Ntinas et al., 2016). The problem with less intensive production practices is that they often produce a lower yield of poorer quality cannabis. Growing outdoors leaves plants vulnerable to volatile weather, mold, and pests (Leafly). Massachusetts winters would also drastically limit the grow season for cultivators to just a few months a year, while indoor facilities could continue to produce products all year (Leafly). These drawbacks are not worth the potential energy savings.

Solar panels are the best option for cannabis cultivators that are looking to reduce their carbon footprint through the use of low emission energy, but putting these practises to use might not come naturally to companies that are usually focus solely on profit. The availability of solar panels in America is at an all time high with energy subsidies projected to reach between $43 and $320 per megawatt hour for solar panel produced energy coming from tax credits that cover between 30% and 60% of wholesale prices (Maloney, 2018). Subsidies provided for solar energy bring the costs of energy provided by solar panels down drastically and continue to do so (Maloney, 2018). To further incentivise solar usage Massachusetts towns and cities should give preference to indoor cultivation facilities that utilize solar panels as their main source of energy. Towns have a high level of control when granting permits to businesses that are trying to grow marijuana within town borders (CCC). If towns made it known that they gave preference to facilities that utilize solar energy then incoming businesses would be more likely to implement solar technology as a way to get gain an advantage over their competition. This would also empower those looking to get a license to include as much renewable energy as possible as a way to maximize the chance that they would be granted a permit.

Fossil fuels are not a clean source of energy and while reduction in use of electricity can help to lessen pollution, to effectively reduce greenhouse gas emissions more eco friendly energy sources need to be utilized. In an effort to reduce fossil fuel consumption, scientists have developed a multitude of systems that are able to produce large amounts of energy without releasing harmful gases into the atmosphere. One of the most common ways to harvest renewable energy is through the use of photovoltaic cells, more commonly known as solar panels. Because of the ease of production, limited drawbacks, and technological advancements surrounding solar panels it is widely thought that they will be the most abundant source of energy in the future (Schmalensee et al., 2015).

One way to encourage greenhouses to make the switch from fossil fuel powered grid energy to roof- or ground-mounted solar panels is for the government to provide subsidies to facilities that use solar panels to provide the majority of their energy demand. If subsidies are provided, more facilities will start using clean energy, bringing the industry’s carbon footprint down (Maloney, 2018; Sanjuan-Delmás et al., 2017). In China, a different subsidy was proposed to provide greenhouses with between $62 and $140 per megawatt hour of electricity produced with solar panels (Wang et al., 2017). Although there is currently no such policy in China, solar powered greenhouses will help lead sustainable development and reduce carbon emissions (Wang et al., 2017). It is clear that if subsidies for using solar panels for energy production are offered, it will attract more users and bring the costs down while at the same time provide clean energy not produced by fossil fuels.

These results could be replicated across Massachusetts as a way decrease the amount of carbon dioxide produced across the state.  

When considering ways to reduce our carbon footprint most Americans do not consider the role that agriculture plays in climate change. 60% of Americans believe that climate change is an ongoing issue but they tend to focus on emissions produced by cars, planes, and factories, rather than agricultural industries (Borick 2018). However, according to the Washington Post, “the nation’s booming marijuana sector is struggling to go green”. They state that analysts and state regulators say the cannabis industry, including states that have legalized recreational pot and those that offer it only for medicinal purposes,  is outpacing many other areas of the economy in energy use, racking up massive electricity bills as more Americans light up. The county’s Marijuana Energy Impact Offset Fund, which tacks on a 2.16-cent surcharge for each kilowatt-hour of electricity used by grow facilities, is something of a model for other states, cities and counties that also recognize the growing energy drain that has resulted from the rapid expansion of legal cannabis (Wolfgang, B., 2018). By introducing legislation now that rewards the use of solar energy Massachusetts can incentivise new businesses to build more sustainable greenhouses from the onset. These eco-friendly greenhouses will reduce the amount of fossil fuels used and could drastically cut their carbon footprint (Ntinas et al., 2016).

The one major hurdle for most growers is the initial cost of adding solar panels being prohibitive. They simply cannot afford the start up costs associated with adding solar panels to a facility and don’t believe that they can be a money saving investment in the long run. However, in one study done by Petru Maior University, they found solar panels payed for themselves in 6 years. After considering the initial costs of the system, yearly operating costs, taxes, and income a facility studied by Petru Maior University found that the initial investment was paid back after six years after saving money on their electricity bill and selling excess energy back to the electricity companies ( hydroponic greenhouse energy supply based on renewable energy). Solar panels also reduce cost because the energy is generated at the site where it is needed and there are no costs associated with transporting the power to where it needs to be (Borenstein 2008). Even when you consider the cost of yearly maintenance of solar panels, the amount of money saved with a reduction of the facility’s energy bill far outweighed the money needed to be paid (LG Energy). These savings jump quickly when you consider the high cost of electricity in Massachusetts where residents pay roughly 14.8 cents per kWh, the the ninth highest in the state (NPR :) ).

Greenhouse agriculture, including marijuana grow houses, is a quickly growing industry that requires high amounts of energy that is currently supplied primarily by fossil fuels which produce large amounts greenhouse gases when burned (Shen et al., 2018; Sanjuan-Delmás et al., 2017). A shift can be made in the industry from fossil fuels to clean energy if subsidies are provided to greenhouses that use solar panels to supply their energy demand. Subsidies will incentivize greenhouse operators to use solar panels and will help make them more affordable to operators who may have not been able to afford solar panels otherwise. Subsidies will result in a reduction in the cost of solar panels over time as more facilities start to use them (Maloney, 2018). A reduction in the reliance on fossil fuels to lower our carbon footprint is essential if climate change is to be mitigated. Solar panels are a great source of renewable energy that are becoming increasingly popular and if utilized by energy-hungry greenhouses can greatly reduce their carbon footprint.

By adding solar panels to grow sites the amount of fossil fuels  used will drop dramatically which will also combat the amount of carbon dioxide being produced which will ultimately help slow the rate of climate change.

A greenhouse growing marijuana intended for legal sales.


Works Cited

Baptista FJ, Guimares AC, Meneses JF, Silva AT, Navas LM. Greenhouse energy

consumption for tomato production in the iberian peninsula countries [electronic resource]. Acta horticulturae. 2012(9521):409-416. doi: //

Baptista FJ, Murcho D, Silva LL, et al. Assessment of energy consumption in organic tomato greenhouse production – a case study. Acta horticulturae. 2017(1164):453-460. doi: //

Barbosa, L. G., Gadelha, D. F., Kublik, N., Proctor, A., Reichelm, L., Weissinger, E., . . . Halden, U. R. (2015). Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods doi:10.3390/ijerph120606879

Barok, J. (2017). Is it time to consider solar power. Cannabis Business Times. Retrieved from

Borenstein, B. (2008).The market value and cost of solar photovoltaic electricity production. University of California Energy Institute. Retrieved from

Borick, C., Rabe, B., Fitzpatrick, N., & Mills, S. (2018). Issues in energy and environmental policy. University of Michigan. Retrieved from

Felix, A. (2018). The economic effects of the marijuana industry in Colorado. Main Street Views.  Retrieved from

Hartig, H., & Geiger, A. (2018). About six-in-ten americans support marijuana legalization. Retrieved from

Hassanien, R. H. E., & Ming, L. (2017). Influences of greenhouse-integrated semi-transparent photovoltaics on microclimate and lettuce growth. International Journal of Agricultural & Biological Engineering, 10(6), 11-22. doi:10.25165/j.ijabe.20171006.3407

Holyoke, Massachusetts, is ready to welcome the marijuana industry with open arms. (2018). NBC News. Retrieved from

Magagninia, G., Grassia, G., & Kotirantab, S. (2018). The effect of light spectrum on the morphology and cannabinoid content of cannabis sativa L. Med Cannabis Cannabinoids. 1:19–27. DOI: 10.1159/000489030

Maloney, B. (2018, March 23). Renewable Energy Subsidies — Yes Or No? Retrieved from

Marijuana Facility Guidance. (2016). Colorado Fire Marshals Special Task Group. Retrieved from

Massachusetts Legislature. (2016). Section 76: Cannabis control commission; members; appointment; terms; chairman; secretary. Retrieved from

Mills, E. (2012). The carbon footprint of indoor Cannabis production. Elsevier. Retrieved from

NASA. (n. d.) How climate is changing. NASA Science. Retrieved from

Ntinas, G. K., Neumair, M., Tsadilas, C. D., & Meyer, J. (2017). Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under southern and central european climatic conditions. Journal of Cleaner Production, 142, 3617-3626. doi:10.1016/j.jclepro.2016.10.106

Ronay, K., & Dumitru, C. (2015). Hydroponic greenhouse energy supply based on renewable energy sources doi://

Schmalensee, R., Bulovic, V., Armstrong, R., Batlle, C., Brown, P., Deutch, J., . . . Vergara, C. (2015). The future of solar energy an interdisciplinary MIT study. Massachusetts Institute of Technology. Retrieved from

Shen, Y., Wei, R., & Xu, L. (2018). Energy consumption prediction of a greenhouse and optimization of daily average temperature. Energies, 11(1), 65. doi:10.3390/en11010065

Warren, G. (2016). Regulating pot to save the polar bear: energy and climate impacts of the marijuana industry. Columbia J Environ Law 2015;40:385. Retrieved from

Wolfgang, B. (2018, January 7). Environmentalists alarmed at marijuana industry’s massive use of carbon-based electricity. Retrieved from

Where greenhouse gases come from. (n.d.) Ames Laboratory. Retrieved from

(2015, January 1). Environment and Energy Facts and Figures. Retrieved from