Nano-scale Dynamics: The mechanical properties of a material cannot be extrapolated from its static mechanical properties when the deformation speed is comparable to the speed of sound of the material, the ultimate speed of mechanical interactions among local mass elements. Since such macroscopic characteristics are believed to be originating from its nano-scale morphology, it is critical to study the nano-scale morphology at extreme dynamic conditions. Moreover, the mechanical properties of either natural or synthetic nano-materials have attracted great attention due to their potential for the future mechanical materials. However, most of their characterizations have been carried out at the quasi static conditions. Our group has a unique experimental method for investigating the high-strain-rate and high strain characteristics of nano-materials, known as Laser Induced Projectile Impact Test (LIPIT), In the LIPIT, a micrometer-scale projectile is accelerated up to ~3 km/s by the use of laser ablation, and impacts a very localized area of a nano-material to induce a HSR deformation. Using the LIPIT, we are quantitatively studying the dynamic responses of nano-structured materials, and attempting to extend the use of LIPIT to fluidic systems including biological substances.

Related publications:
Dynamics and extreme plasticity of metallic microparticles in supersonic collisions” Scientific Report 7, 5073 (2017).
Dynamic Creation and Evolution of Gradient Nanostructure in Single-crystal Metallic Microcubes” Science 354, 312 (2016).
Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration
Science 346, 1092 (2014).
High strain rate deformation of layered nanocomposites” Nature Communications 3, 1164 (2012).

Heat Transport Engineering via Nano-structures: The introduction of designed nano-structures can provide various novel ways to control heat transport. Unlike the classical prediction based on the Stefan-Boltzmann law, the radiative heat flux is dominantly governed by the quantum tunneling of photons at the nano-scale. Moreover, for far-field radiative transport, the surface of a material can be further engineered for non-Plankian thermal radiation. Our group is pursuing various functional nano-structures to control heat transport for energy, defense, and bio applications.

Related publications: “Plasmonic Thermal Emitters for Dynamically Tunable Infrared Radiation” Advanced Optical Materials 5, 1600993 (2017)

Participating Research Centers at UMass
Center for Evolutionary Materials (CEM)
MassNanoTech Institute
Center for Hierarchical Manufacturing (CHM)
UMass Materials Research Science & Engineering Centers (MRSEC)
Institute for Applied Life Science (IALS)
Center for UMass/Industry Research on Polymers (CUMIRP)

Funding Agencies