7/02/18: Congratulations! Amir defended his Master thesis.

THERMAL RADIATION MEASUREMENT AND DEVELOPMENT OF TUNABLE PLASMONIC THERMAL EMITTER USING STRAIN-INDUCED BUCKLING IN METALLIC LAYERS

Amir Kazemi-Moridani

Directed by: Professor Jae-Hwang Lee

An infrared radiometry setup has been developed based on a commercially available FTIR spectrometer for measuring mid-infrared thermal radiation. The setup was calibrated with a lab-built blackbody source. The setup was tested with a grating structure with 4-micron periodicity. Periodic microstructures using nickel and gold are fabricated on elastomeric substrates by use of strain-induced buckling of the nickel layer. The intrinsically low emissivity of gold in the mid-infrared regime is selectively enhanced by the surface plasmonic resonance at three different mid-infrared wavelengths, 4.5 µm, 6.3 µm, and 9.4 µm. As the thermal emission enhancement effect exists only for the polarization perpendicular to the orientation of the microstructures, substantially polarized thermal emission with an extinction ratio of close to 3 is demonstrated. Moreover, the elastically deformed plasmonic thermal emitters demonstrate strain-dependent emission peaks, which can be applied for future mechano-thermal sensing and dynamic thermal signature modulation.