UMass scientists awarded grant NCS-FO: Collaborative Research: Optoelectronic Tools for Closed-Loop Neuron Ensemble Recording and Control during Complex Behaviors

A team of UMass scientists has been awarded a four-year, $953,300 grant from the National Science Foundation (NSF) to develop miniature, implantable hardware that can record complex brain activity in animals and analyze it in real time. This new technical capability will allow the researchers to trace the origin of complex brain activity down to cellular levels, they say.

The NSF funding is part of $16 million given to 18 cross-disciplinary projects around the country to conduct innovative research on neural and cognitive systems.

The UMass Amherst team includes Guangyu Xu in electrical and computer engineeringDavid Moorman in psychological and brain sciences, and Geng-Lin Li in biology. They work collaboratively with Ethan Meyers in statistics, from Hampshire College.

“The toolbox we propose to establish in this project will offer high precision control over and recording from the neural activity in the brain of a rat or mouse, together with efficient algorithms that can analyze such activity in real time. Such capability will allow us to trace the origin of complex animal behaviors down to cellular levels,” Xu says.

Read the story from the College of Natural Sciences

Award abstract:

Brain science will benefit from the capabilities in tracing complex animal behaviors down to ensembles of individual neurons, and moreover establishing a real-time closed-loop brain-interface, ideally with deep brain access in a free-moving animal. This research project aims to address the focus areas in this National Science Foundation program by merging novel neurotechnology, evaluation of neural circuits during performance of complex cognitive behaviors, and large-scale neuron ensemble analysis and closed-loop behavioral control. The outcome of this research will result in new technologies and computational tools that can be used across the field of neuroscience and behavior, strengthening research efforts of multiple research groups. The educational objectives of this proposal are aimed at training and inspiring young engineers and scientists who are equipped with the multidisciplinary background required to help define the future trajectory of brain interfaces and data sciences. The broader impacts of this project include: 1) advancing transformative device technologies for next-generation neurotechnology and providing new and more powerful tools for neuroscience studies, 2) educating underrepresented undergraduate and graduate researchers to contribute to the nation’s workforce needs in biotechnology, 3) contributing to the K-12 science, technology, engineering, and mathematics education through weekend seminars and mentoring student-teacher pairs from local middle/high schools; and 4) promoting neuroscience and neurotechnology among local senior citizens and support groups for neurological diseases.

The research objective of this proposal is to combine high precision optoelectronic neural probes with real-time neural decoding to feedback optogenetic control over animal behavior. Such closed-loop neural interface will establish a generalizable technology platform to study complex animal behaviors using optogenetic tools and real-time learning. The proposed work will open ample research opportunities and form connections among hardware engineering, cognitive neuroscience, and data science. The intellectual merit of the proposed work will be evidenced by three major contributions: 1) demonstration of high-precision optogenetic brain interface that combines multiplexed recording from and bi-directional control over neuron ensembles, 2) demonstration of closed-loop brain interface that employs real-time neural decoding and adaptive learning to control animal behavior, and 3) characterization of complex decision-making using high-precision, multiplexed data linking multiple brain areas.

This award reflects NSF’s statutory mission and has been deemed worthy of support through evaluation using the Foundation’s intellectual merit and broader impacts review criteria.