A new metric for calculating acoustic dispersion in stop inventories

Introduction

- Dispersion Theory (DT; Liljencrants and Lindblom, 1972) claims acoustically dispersed vowel inventories should be typologically common.
- Dispersion is often quantified using triangle area between three mean or prototypical points (Andruski et al., 1999; Jacewicz et al., 2007; Ziegler & Von Cramon, 1983).
 → This approach ignores distributions, reducing variable categories to single points.
 → Within-category variance affects perception (Clayards, 2008).
- **Proposal**: A new metric that incorporates within-category spread based on the Jeffries-Matusita (JM) distance.
- **Results**: When using the new metric to extend DT predictions to consonants, results change. But still does not recover predictions of DT for stops.

 Choice of metric is important and influences results in work on Dispersion Theory.

Dispersion Theory and consonants

- There has been relatively little work on whether DT also applies to consonant inventories.

 → Schwartz et al. (2012). The /coronal-velar-pharyngeal/ (/d g/)) inventory is the most dispersed, not the typologically common /labial-coronal-velar/ (/b d g/).

Hypotheses to understand this result in light of DT predictions:

(1) DT does not apply to consonants.
(2) The phonetic space they considered is not the most relevant for the data
 → Argued by Schwartz et al. using a Frame Content model (MacNeille, 1998) to exclude pharyngeals and epiglottals.
(3) The metric they chose is not the most relevant for the data (proposed here).

- Even with the more complex metric shown here, the /labial-coronal-velar/ (/b d g/) inventory is never among the most dispersed.

Implications: DT does not apply to stop inventories the same way it applies to vowel inventories.

- DT either makes incorrect predictions for stop inventories, or an approach like that of Schwartz et al. is needed.

The data (Schwartz et al., 2012)

- 50,000 stop tokens generated along vocal tract in three vowel contexts ([i a u]), then grouped according to 8 places of articulation (POA).

F1, F2, F3 sampled at beginning of transition to vowel when formant structure first appears.

- This is a reasonable phonetic space to consider for stop POA.
- Evidence points to primacy of formant transitions as perceptual cues to POA (Walley & Carrell, 1988; Sussman et al., 1991).

Problems characterizing distributions with means

- Shapes and variances of categories are lost when characterized only by mean values.

Calculating dispersion with mean-to-mean distance

\[
\text{Distance between two mean points (i, j) in } < F_1, F_2, F_3 > \text{ space} \]

\[
d_{ij} = \sqrt{(F_1_i - F_1_j)^2 + (F_2_i - F_2_j)^2 + (F_3_i - F_3_j)^2} \quad (1)
\]

Area of a triangle as a dispersion metric

\[
A = \frac{1}{2} |(s - d_a)(s - d_b) - s(s - d_a + d_b)| \quad \text{where } s = (d_a + d_b + s)/3 \quad (2)
\]

Mean-to-mean dispersion results in < F_1, F_2, F_3 > space

<table>
<thead>
<tr>
<th>POA1</th>
<th>POA2</th>
<th>POA3</th>
<th>Dispersion (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 coronal</td>
<td>epi-pharyngeal velar</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>2 coronal</td>
<td>uvular velar</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>3 epi-pharyngeal palatal</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 bilabial coronal epi-pharyngeal</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 bilabial coronal velar</td>
<td>0.23 = Expected</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Incorporating covariance into dispersion

- Jeffries-Matusita (JM) distance (Kobayashi & Thomas, 1967) used as the base of a dispersion metric, incorporates covariance, the multidimensional analog of variance.
 → A transformation of the Bhattacharyya distance into a fixed range $[0, \sqrt{2}]$.

Jeffries-Matusita Distance between two distributions F,G

\[
D_{JM}(F, G) = \sqrt{2(1 - \exp(-D_{JM}(F, G)))} \quad \text{where } D_{JM}(F, G) = \int \sqrt{f(x)g(x)}dx \quad (3)
\]

JM distance dispersion results in < F_1, F_2, F_3 > space

<table>
<thead>
<tr>
<th>POA1</th>
<th>POA2</th>
<th>POA3</th>
<th>Dispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 coronal</td>
<td>epi-pharyngeal velar</td>
<td>0.864</td>
<td></td>
</tr>
<tr>
<td>2 coronal</td>
<td>epi-pharyngeal palatal</td>
<td>0.863</td>
<td></td>
</tr>
<tr>
<td>15 coronal palatal</td>
<td>0.781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 coronal velar</td>
<td>0.773 = Expected</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jeffries-Matusita distance does not improve the results in favor of DT predictions.

- The desired /b d g/ inventory ranks lower with this metric than mean-to-mean distance.
- Epi-pharyngeals will always be present in the most dispersed inventories.

Discussion and conclusion

Is < F_1, F_2, F_3 > the relevant space for this data?

- Maybe the F1 dimension isn’t as relevant in consonant perception. F1 only discriminates epi-pharyngeals from other places.

JM dispersion results in < F_2, F_3 > space

<table>
<thead>
<tr>
<th>POA1</th>
<th>POA2</th>
<th>POA3</th>
<th>Dispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 coronal</td>
<td>epi-pharyngeal velar</td>
<td>0.836</td>
<td></td>
</tr>
<tr>
<td>2 coronal</td>
<td>epi-pharyngeal palatal</td>
<td>0.774</td>
<td></td>
</tr>
<tr>
<td>10 coronal palatal</td>
<td>0.737</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 coronal velar</td>
<td>0.697 = Expected</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

But even when removing the F1 dimension entirely, the /b d g/ inventory is still not among the most dispersed, and the better dispersed inventories are all unattested.

Sufficient vs. maximal dispersion (Lindblom, 1986)

- The /b d g/ inventory can’t be considered sufficiently dispersed while /d g/ is maximally dispersed because inventories with similar dispersion scores to /d g/ are unattested.

Conclusion

Results always depend on the metric chosen in work on Dispersion Theory.

- The most acoustically dispersed stop inventory is unattested ([/d g/]), not the typologically common /b d g/.
- Either Dispersion Theory doesn’t apply to consonants as it does vowels, or the phonetic space must be altered to exclude pharyngeals and epiglottals as in Schwartz et al. (2012).