
IV
Introduction to

effective field theory

The purpose of an effective field theory is to represent in a simple way the
dynamical content of a theory in the low energy limit. One uses only those
light degrees of freedom that are active at low energy, and treats their
interactions in a full field theoretic framework. The effective field theory
is often technically non-renormalizable, yet loop diagrams are included
and renormalization of the physical parameters is readily accomplished.

Effective field theory is used in all aspects of the Standard Model and
beyond, from QED to superstrings. Perhaps the best setting for learning
about the topic is that of chiral symmetry. Besides being historically
important in the development of effective field theory techniques, chiral
symmetry is a rather subtle subject which can be used to illustrate all
aspects of the method, viz. the low energy expansion, non-leading be-
havior, loops, renormalization and symmetry breaking. In addition, the
results can be tested directly by experiment since the chiral effective field
theory provides a framework for understanding the very low energy limit
of QCD.

In this chapter we introduce effective field theory by a study of the
linear sigma model, and discuss the generalization of these techniques to
other settings.

IV–1 Effective lagrangians and the sigma model

The linear sigma model, introduced in Sects. I–4, I–6, provides a ‘user
friendly’ introduction to effective field theory because all the relevant ma-
nipulations can be explicitly demonstrated. The Goldstone boson fields,
the pions, are present at all stages of the calculation. It also introduces
many concepts which are relevant for the low enegy limit of QCD. How-
ever, low energy QCD is far less transparent, involving a transference
from the quark and gluon degrees of freedom of the original lagrangian
to the pions of the physical spectrum. Nevertheless, the low energy prop-
erties of the two theories have many similarities.
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2 IV Introduction to effective field theory

The first topic that we need to describe is that of an ‘effective la-
grangian’. First let us illustrate this concept by simply quoting the
result to be derived below. Recall the sigma model of Eq. (I–4.14),

L = ψ̄i/∂ψ +
1

2
∂µπ · ∂µπ +

1

2
∂µσ∂

µσ

− gψ̄ (σ − iτ · πγ5)ψ +
1

2
µ2

(
σ2 + π2

)
− λ

4

(
σ2 + π2

)2
.

(1.1)

This is a renormalizable field theory of pions, and from it one can calculate
any desired pion amplitude. Alternatively, if one works at low energy
(E ≪ µ), then it turns out that all matrix elements of pions are contained
in the rather different looking ‘effective lagrangian’

Leff =
F 2

4
Tr

(
∂µU∂

µU †
)
, U = exp iτ · π/F , (1.2)

where F = v =
√
µ2/λ at tree level (cf. Eq. (I–6.9)). This effective

lagrangian is to be used by expanding in powers of the pion field

Leff =
1

2
∂µπ · ∂µπ +

1

6F 2

[
(π · ∂µπ)2 − π2 (∂µπ · ∂µπ)

]
+ . . . , (1.3)

and taking tree-level matrix elements. This procedure is a relatively sim-
ple way of encoding all the low energy predictions of the theory. Moreover,
with this effective lagrangian is the starting point of a full effective field
theory treatment including loops which we will develop in Sect. IV–3.

Representations of the sigma model

In order to embark on the path to the effective field theory approach, let
us rewrite the sigma model lagrangian as

L =
1

4
Tr

(
∂µΣ∂

µΣ†
)
+
µ2

4
Tr

(
Σ†Σ

)
− λ

16

[
TrΣ†Σ

]2
+ ψ̄Li/∂ψL + ψ̄Ri/∂ψR − g

(
ψ̄LΣψR + ψ̄RΣ

†ψL

)
,

(1.4)

with Σ = σ+ iτ ·π. The model is invariant under the SU(2)L × SU(2)R
transformations

ψL → LψL , ψR → RψR , Σ → LΣR† (1.5)

for L,R in SU(2). This is the linear representation.∗

After symmetry breaking and the redefinition of the σ field,

σ = v + σ̃ , v =

√
µ2

λ
, (1.6)

∗ A number of distinct 2×2 matrix notations, among them Σ, U , andM , are commonly employed
in the literature for either the linear or the nonlinear cases. It is always best to check the
definition being employed and to learn to be flexible.
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the lagrangian reads†

L =
1

2

(
∂µσ̃∂

µσ̃ − 2µ2σ̃2
)
+

1

2
∂µπ · ∂µπ − λvσ̃

(
σ̃2 + π2

)
− λ

4

(
σ̃2 + π2

)2
+ ψ̄ (i/∂ − gv)ψ − gψ̄ (σ̃ − iτ · πγ5)ψ ,

(1.7)

indicating massless pions and a nucleon of mass gv. All the interactions
in the model are simple nonderivative polynomial couplings.

There are other ways to display the content of the sigma model besides
the above linear representation. For example, instead of σ̃ and π one
could define fields S and φ,

S ≡
√

(σ̃ + v)2 + π2−v = σ̃+ . . . , φ ≡ vπ√
(σ̃ + v)2 + π2

= π+ . . . ,

(1.8)
where one expands in inverse powers of v. For lack of a better name,
we can call this the square root representation. The lagrangian can be
rewritten in terms of the variables S and φ as

L =
1

2

[
(∂µS)

2 − 2µ2S2
]
+

1

2

(
v + S

v

)2
[
(∂µφ)

2 +
(φ · ∂µφ)2

v2 −φ2

]

− λvS3 − λ

4
S4 + ψ̄i/∂ψ − g

(
v + S

v

)
ψ̄
[(
v2 −φ2

)1/2 − iφ · τγ5
]
ψ .

(1.9)
Although this looks a bit forbidding, no longer having simple polynomial
interactions, it is nothing more than a renaming of the fields. This form
has several interesting features. The pion-like fields, still massless, no
longer occur in the potential part of the lagrangian, but instead appear
with derivative interactions. For vanishing S, this is called the nonlinear
sigma model.

Another nonlinear form, the exponential parameterization, will prove
to be of importance to us. Here the fields are written as

Σ = σ + iτ · π = (v + S)U , U = exp
(
iτ · π′/v

)
(1.10)

such that π′ = π + . . .. Using this form, we find

L =
1

2

[
(∂µS)

2 − 2µ2S2
]
+

(v + S)2

4
Tr

(
∂µU∂

µU †
)

− λvS3 − λ

4
S4 + ψ̄i/∂ψ − g(v + S)

(
ψ̄LUψR + ψ̄RU

†ψL

)
.

(1.11)

† Here, and in subsequent expressions for L, we drop all additive constant terms.
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The quantity U transforms under SU(2)L × SU(2)R in the same way as
does Σ, i.e.

U → LUR† . (1.12)

This lagrangian is reasonably compact and also has only derivative cou-
plings.

Representation independence

We have introduced three sets of interactions with very different appear-
ances. They are all nonlinearly related. In each of these forms the free
particle sector, found by looking at terms bilinear in the field variables,
has the same masses and normalizations. To compare their dynamical
content, let us calculate the scattering of the Goldstone bosons of the
theory, specifically π+π0 → π+π0. The diagrams that enter at tree level
are displayed in Fig. IV–1. The relevant terms in the lagrangians and
their tree-level scattering amplitudes are as follows.

1) Linear form:

LI = −λ
4

(
π2

)2 − λvσ̃π2 ,

iMπ+π0→π+π0 = −2iλ+ (−2iλv)2
i

q2 −m2
σ

= −2iλ

[
1 +

2λv2

q2 − 2λv2

]
=
iq2

v2
+ . . . ,

(1.13)

where q = p′+ − p+ = p0 − p′0 and the relation m2
σ = 2λv2 = 2µ2

has been used. The contributions of Figs. IV–1(a), 1(b) are seen to
cancel at q2 = 0. Thus, to leading order, the amplitude is momentum-
dependent even though the interaction contains no derivatives. The
vanishing of the amplitudes at zero momentum is universal in the limit
of exact chiral symmetry.

2) Square root representation:

LI =
1

2

(φ · ∂µφ)2

(v2 −φ2)
+
S

v
∂µφ · ∂µφ . (1.14)

Fig. IV–1 Contributions to π+π0 elastic scattering
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For this case, the contribution of Fig. IV–1(b) involves four factors of
momentum, two at each vertex, and so may be dropped at low energy.
For Fig. IV–1(a) we find

LI =
1

2v2
(
φ0∂µφ

0 + φ+∂µφ
− + φ−∂µφ

+
)2

,

iMφ+φ0→φ+φ0 =
i
(
p′+ − p+

)2
v2

=
i q2

v2
+ . . . .

(1.15)

3) Exponential representation:

LI =
(v + S)2

4
Tr

(
∂µU∂

µU †
)
+ . . . . (1.16)

Again Fig. IV–1(b) has a higher order (O(p4)) contribution, leaving
only Fig. IV–1(a),

LI =
1

6v2

[(
π′ · ∂µπ′)2 − π′2 (∂µπ′ · ∂µπ′)] ,

iMπ+π0→π+π0 =
i
(
p′+ − p+

)2
v2

+ . . . .

(1.17)

The lesson to be learned is that all three representations give the same
answer despite very different forms and even different Feynman diagrams.
A similar conclusion would follow for any other observable that one might
wish to calculate.

The above analysis demonstrates a powerful field theoretic theorem,
proved first by R. Haag [Ha 58, CoWZ 69, CaCWZ 69], on representa-
tion independence. It states that if two fields are related nonlinearly, e.g.
φ = χF (χ) with F (0) = 1, then the same experimental observables re-
sult if one calculates with the field φ using L (φ) or instead with χ using
L (χF (χ)). The proof consists basically of demonstrating that (i) two
S-matrices are equivalent if they have the same single particle singulari-
ties, and (ii) since F (0) = 1, φ and χ have the same free field behavior
and single particle singularities. This result can be made plausible if we
think of the scattering in non-mathematical terms. If the free particles
are isolated, they have the same mass and charge and experiment cannot
tell the φ particle from the χ particle. At this level they are in fact the
same particles, due to F (0) = 1. The scattering experiment is then per-
formed by colliding the particles. The results cannot depend on whether
a theorist has chosen to calculate the amplitude using the φ or the χ
names. That is, the physics cannot depend on a labeling convention.

This result is quite useful as it lets us employ nonlinear representations
in situations where they can simplify the calculation. The linear sigma
model is a good example. We have seen that the amplitudes of this theory
are momentum-dependent. Such behaviour is obtained naturally when
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one uses the nonlinear representations, whereas for the linear represen-
tation more complicated calculations involving assorted cancelations of
constant terms are required to produce the correct momentum depen-
dence. In addition, the nonlinear representations allow one to display the
low energy results of the theory without explicitly including the massive
σ̃ (or S) and ψ fields.

IV–2 Integrating out heavy fields

When one is studying physics at some energy scale E, one must explicitly
take into account all the particles which can be produced at that energy.
What is the effect of fields whose quanta are too heavy to be directly
produced? They may still be felt through virtual effects. When using an
effective low energy theory, one does not include the heavy fields in the
lagrangian, but their virtual effects are represented by various couplings
between light fields. The process of removing heavy fields from the la-
grangian is called integrating out the fields. Here, we shall explore this
process.

The decoupling theorem

There is a general result in field theory, called the decoupling theorem,
which describes how the heavy particles must enter into the low energy
theory [ApC 75, OvS 80]. The theorem states that if the remaining
low energy theory is renormalizable, then all effects of the heavy particle
appear either as a renormalization of the coupling constants in the theory
or else are suppressed by powers of the heavy particle mass. We shall not
display the formal proof. However, the result is in accord with physical
expectations. If the heavy particle’s mass becomes infinite, one would
indeed expect the influence of the particle to disappear. Any shift in
the coupling constants is not directly observable because the values of
these couplings are always determined from experiment. Inverse powers
of heavy particle mass arise from propagators involving virtual exchange
of the heavy particle.

In the Standard Model, the most obvious example of this is the role
played in low energy physics by the W± and Z gauge bosons. For exam-
ple, while W±-loops can contribute to the renormalization of the electric
charge, the effect cannot be isolated at low energies. Also, the resid-
ual form of W±-exchange amplitudes is that of a local product of two
weak currents (Fermi interaction) with coupling strength GF . Its effect
is suppressed because GF ∝M−2

W .
However, in the Standard Model there is an example where the heavy

particle effects do not decouple. For a heavy top quark, there are many
loop diagrams which do not vanish as mt → ∞, but instead behave as
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m2
t or ln(m2

t ). This can occur because the electroweak theory with the
t-quark removed violates the SU(2)L symmetry, as the full

(
t
b

)
doublet

is no longer present. Without the constraint of weak-isospin symmetry,
the theory is not renormalizable and new divergences can occur in flavor
changing processes. These would-be divergences are cut off in the real
theory by the mass mt. Note that at the same time as mt → ∞, the top
quark Yukawa coupling also goes to infinity, and hence induces strong
coupling which can also lead to a violation of decoupling.

In the sigma model, all the low energy couplings of the pions are propor-
tional to powers of 1/v2 ∝ 1/m2

σ, the simplest example being Eq. (1.9).
Hence the effective renormalizable theory is in fact a free field theory,
without interactions. The interactions have been suppressed by powers
of heavy particle masses. We shall use the energy expansion of the next
section to organize the expansion in powers of the inverse heavy mass.

Integrating out heavy fields at tree level

The name of this procedure comes from the path integral formalism,
where the process of integrating out a heavy field H and leaving behind
light fields ℓi is defined in terms of an effective action Weff [ℓi],

Z[ℓi] = eiWeff [ℓi] ≡
∫

[dH] ei
∫
d4xL(H(x),ℓi(x)) . (2.1)

However, the procedure is equally familiar from perturbation theory, in
which the effect of the path integral is represented by a sum of Feynman
diagrams.

Let us proceed with a path integral example. Consider a linear coupling
of H to some combination of fields J , with the lagrangian

L =
1

2

(
∂µH∂

µH −m2
HH

2
)
+ JH . (2.2)

One way to integrate out H is to ‘complete the square’, i.e. we write∫
d4xL(H, J) =

∫
d4x

[
−1

2
HDH + JH

]
= −1

2

∫
d4x

[(
H −D−1J

)
D
(
H −D−1J

)
− JD−1J

]
= −1

2

∫
d4x

[
H ′DH ′ − JD−1J

]
,

(2.3)
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where we have used the shorthand notations,

D = +m2
H ,

D−1J = −
∫
d4y ∆F (x− y)J(y) ,(

x +m2
H

)
∆F (x− y) = −δ4(x− y) ,

H ′(x) = H(x) +

∫
d4y ∆F (x− y)J(y) ,∫

d4x JD−1J = −
∫
d4x d4y J(x)∆F (x− y)J(y) ,

(2.4)

and have integrated by parts repeatedly. Since we integrate in the path
integral over all values of the field at each point of spacetime, we may
change variables [dH] = [dH ′] so

Z[J ] = eiWeff [J ] =

∫
[dH]ei

∫
d4xL(H,J)

=

∫
[dH ′]ei

∫
d4x[−1

2H
′DH′+1

2JD
−1J]

= Z[0] e
i
2

∫
d4x JD−1J ,

(2.5)

where

Z[0] =

∫
[dH ′]ei

∫
d4x −1

2H
′DH′

. (2.6)

Here, Z[0] is an overall constant that can be dropped from further con-
sideration. From this result we obtain the effective action

Weff [J ] = −1

2

∫
d4x d4y J(x)∆F (x− y)J(y) . (2.7)

This action is non-local because it includes an integral over the propaga-
tor. However, the heavy particle propagator is peaked at small distances,
of order 1/m2

H . This allows us to obtain a local lagrangian by Taylor
expand J(y) as

J(y) = J(x) + (y − x)µ [∂µJ(y)]y=x + . . . . (2.7)

Keeping the leading term and using∫
d4y∆F (x− y) = − 1

m2
H

, (2.8)

we obtain

Weff [J ] =

∫
d4x

1

2m2
H

J(x)J(x) + . . . , (2.9)
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where the ellipses denote terms suppressed by additional powers of mH .
Outside of the path integral context, this result is familiar from W -
exchange in the weak interactions.

Matching the sigma model at tree level

We can apply this procedure to the lagrangian for the sigma model,
where the scalar field S is heavy with respect to the Goldstone bosons.
Thus, considering the theory in the low energy limit, we may integrate out
the field S. Referring to Eq. (1.11) and neglecting the S2 interactions,
it is clear that we should make the identifications H → S and J →
vTr (∂µU∂

µU †)/2. The effective lagrangian then takes the form

Leff =
v2

4
Tr

(
∂µU∂

µU †
)
+

v2

8m2
S

[
Tr

(
∂µU∂

µU †
)]2

+ . . . , (2.10)

where the second term in Eq. (2.10) is the result of integrating out the
S-field and gives rise to the diagram of Fig. IV–1(b). Additional tree-
level diagrams are implied by the sigma model when one includes the S3

and S4 interactions. Since these carry more derivatives, the above result
is the correct tree-level answer with up to four derivatives.

This calculation is an illustration of the concept of ‘matching’, here
applied at tree level. We match the effective field theory to the full theory
in order to reproduce the correct matrix elements. From the starting
point of Eq. (1.11), we expect that there will be a low energy effective
lagrangian which is written as an expansion in powers of Tr (∂µU∂

µU †),
with coefficients that are initially unknown. In the matching procedure,
we choose the coefficients to be those appropriate for the full theory.

In calculating transitions of pions, this is then used by expanding the
U matrix in terms of the pion fields and taking matrix elements. At
the lowest energies, only the lagrangian with two derivatives is required,
justifying the result quoted in Eq. (1.2).∗ Interested readers may verify
that the two terms in Eq. (2.10) reproduce the first two terms in the π+π0

scattering amplitude previously obtained in Eq. (1.13). However, we have
gained a great deal by using the effective lagrangian framework, because
now all matrix elements of pions can be calculated simply to this order
in the energy by simply expanding the effective lagrangian and reading
off the answer.

∗ We will show that this term is not modified by loop effects, aside from the renomalization of
the parameter v.
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IV–3 Loops and renormalization

The treatment above has left us with a non-linear effective lagrangian
of the form that is called “non-renormalizable”. It is also incomplete
because loop diagrams have not yet been considered. One might worry
that because the effective lagrangian is non-renormalizeable, loops would
cause trouble. However, that is not the case. Indeed, this situation helps
demonstrate the “effectiveness” of effective field theory - we will see that
the important loop processes are reproduced in a simpler manner using
the effective field theory.

Continuing our treatment of the linear sigma model, let us display the
precise formal correspondence between the full theory and the effective
theory. If we are only considering matrix elements involving the light
pions, we can write the path integral defining the theory∗ as

Z[j] = N

∫
[dπ(x)] [dσ(x)] exp

[
i

∫
d4x (L [π(x), σ(x)] + j(x) · π(x))

]
.

(3.1)
When working at low energies, we can then integrate out the heavy field
σ to produce the effective theory

Z[j] = N

∫
[dπ(x)] exp

[
i

∫
d4x (Leff [π(x)] + j(x) · π(x))

]
. (3.2)

Because the σ field is heavy, its influence will not propagate far and the
resulting effective lagrangian will be local. However, this correspondence
emphasizes the fact that one is still left with a full field theory. The
effective lagrangian cannot be applied only at tree level. Loop processes
must also be considered, as is the case in any field theory. The original
theory involves both σ and π loops, while the effective theory has only
the π loop diagrams. We will demonstrate how to match the effective
theory to the full theory through an explicit calculation.

In order to accomplish the renormalization and matching procedure
for the effective theory we will need a lagrangian similar to the tree level
form, but with initially unknown coefficients that will be chosen later.

Leff =
v2

4
Tr

(
∂µU∂

µU †
)

+ ℓ1[ Tr
(
∂µU∂

µU †
)
]2 + ℓ2Tr

(
∂µU∂νU

†
)
Tr

(
∂µU∂νU †

)
(3.3)

This is the most general form consistent with the symmetry U → LUR†,
containing up to four derivatives. The first portion of this lagrangian,

∗ Recall that σ = S in some previous formulas.
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when expanded in terms of the pion field, yields the usual pion propagator
as well as the lowest order result for the ππ scattering amplitudes.

Let us again consider the process π+ + π0 → π+ + π0, this time to
one loop. The full linear sigma model is renormalizeable and will yield
finite predictions in terms of the (renormalized) parameters of the theory.
The effective theory has been constructed to have the same vertices at
the lowest energies, but will have quite different high energy properties
because it is missing the extra high energy degree of freedom. There
will be new divergences present in perturbation theory. However the low
energy effects will be similar in both calculations.

For example, consider the set of diagrams depicted in Fig. IV-2. In
the full theory, all of these diagrams exist, and our previous result of Eq.
(1.13) can be used to write the combined amplitudes as .

iMs
full =

∫
d4k

(2π)4

[
−2iλ+ (−2iλv)2

i

(k + p+)2 −m2
σ

]
× i

(k + p+ + p0)2
i

k2

×
[
−2iλ+ (−2iλv)2

i

(k + p′+)
2 −m2

σ

] (3.4)

The result is a sum of bubble, triangle and box diagrams. The box
in particular is a very complicated function of the kinematic invariants,
involving di-logarithms[‘tHV79, DeNS91, ElZ08]. The divergences from
the bubble and triangle diagrams go into the renormalization of the λφ4

coupling of the original lagrangian. For the effective theory, in contrast,
one uses only pions and considers only the bubble diagram. The low
energy limit of the vertex is employed. Again drawing from our results
of Eq. (1.13), also visible by taking the leading approximation for the
vertices in Eq. (3.4), one finds

iMs
eff =

∫
d4k

(2π)4
i(k + p+)

2

v2
i

(k + p+ + p0)2
i

k2
i(k + p′+)

2

v2
(3.5)

This diagram has a different divergence than the full theory. It is also
much simpler kinematically, and its dimensional regularized form is easily

Fig. IV–2 A subset of one loop diagrams contributing to π+π0 elastic scattering
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evaluated as

iMs
eff =

i

96π2v4
s(s− u)

[
2

4− d
− γ + ln 4π − ln

−s− iϵ

µ2

]
+

i

288π2v4
[2s2 − 5su]

(3.6)

using the usual variables s = (p+ + p0)
2, t = (p+ − p′+)

2, u = (p0 − p′+)
2.

There are various interesting features of this result. Note that the whole
amplitude is of order (Energy)4, while the original scattering vertex of Eq.
(1.13) was of order (Energy)2. Technically this follows simply from noting
that the loop has factors of 1/v4 and that in dimensional regularization
the only other dimensional factors are the external energies. On a more
profound level it is an example of the energy expansion of the effective
theory - loops produce results that are suppressed by higher powers of
the momenta at low energy. Because of this kinematic dependence, one
can also readily see that the divergence cannot be absorbed into the
renormalization of the original effective O(E2) effective lagrangian. In
fact we know that this divergence is spurious. It was generated because
the effective theory had the wrong high energy behavior compared to the
full theory. This is to be expected in an effective theory - it does not
pretend to know the content of the theory at all energies. However the
divergence will disappear in the matching of the two theories through
the renormalization of a term in the O(E4) lagrangian - this will be
demonstrated below.

Even more interesting from the physics point of view is that the s(s−
u) ln−s behavior is exactly what is found by taking the low energy limit of
the complicated result from the full theory and expanding it to this order
in the momenta. This occurs because the ln−s factor comes from the low
energy regions of the loop momenta, of order k ∼ s, so that the logarithm
represents long distance propagation∗. Indeed the imaginary part of the
amplitude arising from ln(−s−iϵ) = ln(s)−iπ (for s > 0) comes from the
on-shell intermediate state of two pions. This logarithm could never be
represented by a local effective lagrangian and is a distinctive feature of
long distance (low energy) quantum loops. These features match in the
two calculations because when the loop momenta is small the effective
field theory approximation for the vertex is valid. Overall the effective
field theory has an incorrect high energy behavior but does capture the
correct low energy dynamics.

The comparison of the full theory and the effective theory can be carried
out directly for this reaction. The dimensionally regularized result for the

∗ Short distance pieces from higher values of k would be analytic functions able to be Taylor
expanded around s = 0.
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full theory is given in [MaM08], but is too complicated to be reproduced
here. However the expansion of the full theory at low energy in terms of
renormalized parameters is relatively simple [GaL84]

Mfull =
t

v2
+

[
1

m2
σv

2
− 11

96π2v4

]
t2

− 1

144π2v4
[s(s− u) + u(u− s)]

− 1

96π2v4

[
3t2 ln

−t
m2
σ

+ s(s− u) ln
−s
m2
σ

+ u(u− s) ln
−u
m2
σ

]
(3.7)

The effective theory result [Le72, GaL84]has a very similar form but does
not know about the existence of the σ,

Meff =
t

v2
+

[
8ℓr1 + 2ℓr2 +

5

192π2

]
t2

v4

+

[
2ℓr2 +

7

576π2

]
[s(s− u) + u(u− s)]/v4

− 1

96π2v4

[
3t2 ln

−t
µ2

+ s(s− u) ln
−s
µ2

+ u(u− s) ln
−u
µ2

] (3.8)

where we have defined∗

ℓr1 = ℓ1 +
1

384π2

[
2

4− d
− γ + ln 4π

]
ℓr2 = ℓ2 +

1

192π2

[
2

4− d
− γ + ln 4π

] (3.9)

At this stage we can match the two theories, providing identical scattering
amplitudes to this order, through the choice

ℓr1 =
v2

8m2
σ

+
1

384π2

[
ln
m2
σ

µ2
− 35

6

]
ℓr2 =

1

192π2

[
ln
m2
σ

µ2
− 11

6

] (3.10)

The reader is invited to compare this result with the tree level matching,
Eq. (2.10). We have not only obtained a more precise matching, we
also have generated important kinematic dependence, particularly the
logarithms, in the scattering amplitude.

We have seen that the predictions of the full theory can be reproduced
even when using only the light degrees of freedom, as long as one chooses

∗ Readers who compare with [GaL84] should be aware that our normalization of the ℓi coefficients
differs by a factor of four.
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the coefficient of the effective lagrangian appropriately. This holds for all
observables. Once the matching is done, other processes can be calcu-
lated using the effective theory without the need to match again for each
process†. The total effect of the heavy particle, both tree diagrams and
loops, has been reduced to a few numbers in the lagrangian, which we
have deduced from matching conditions to a given order in an expansion
in the energy.

In this example we match to a known calculable theory. In other re-
alizations of effective field theory, the full theory may be unknown (for
example, in the case of gravity [Do 94]) or very difficult to calculate (as we
will discuss for QCD). In cases where direct matching is not possible, the
renormalized coefficients in the lagrangian could be determined through
measurement. Measuring the value of the coefficients in one reaction
would allow them to be used by the effective theory in other processes.

IV–4 General features of effective field theory

After this explicit example, let us think more generally about effective
field theories. In quantum mechanics and quantum field theory, we face
what appears to be an impossible situation. Intermediate states in per-
turbation theory and in loop diagrams include all energies, even beyond
those which have been probed experimentally. Yet we expect more new
particles and new interactions to be present eventually at higher energies.
How can we then reliably perform any calculation without knowing the
particles and interactions at all energies which enter in our calculations?

The answer essentially comes from the uncertainty principle. Effects
from high energy appear local when viewed at low energy. This means
that they are equivalent to terms in a local lagrangian. Most often the
coefficient of a particular term in a lagrangian - a mass or a coupling
constant - is something that we have to measure. So the effects of physics
from high energy is contained in the parameters that we measure at low
energy.

Effective field theory embraces this fact and uses it to perform calcu-
lations at low energy. In theories where the high energy limit is known,
such as our linear sigma model example above, the coefficients of the ef-
fective lagrangian can be determined by matching. In theories where the
high energy physics is not known, we still know that its effect is local, so
that we parameterize it by the most general local lagrangian.

The decoupling theorem tell us that the high energy effect appears in
renormalized couplings or in terms suppressed by powers of the heavy

† As part of our treatment of QCD, we show the universality of the renormalization in Appendix
B-2.
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scale. In this sense, all of our theories can be viewed as effective field
theories. The class of renormalizable field theories is a subset of effective
field theories in which the power suppressed lagrangians have not yet
been needed.

Effective lagrangians and symmetries

What would happen if, instead of having a straightforward known theory
like the linear sigma model, we were dealing with an unknown or unsolv-
able theory with the same SU(2)L × SU(2)R chiral symmetry? In this
case there would exist some set of pion interactions which, although not
explicitly known, would be greatly restricted by the SU(2) chiral sym-
metry. Once again we could choose to describe the pion fields in terms
of the exponential parameterization U , with a symmetry transformation

U → LUR† (4.1)

for L,R in SU(2). Not having an explicit prescription, we would proceed
to write out the most general effective lagrangian consistent with the
chiral symmetry. In view of the infinite number of possible terms con-
tained in such a description, this would appear to be a daunting process.
However, the energy expansion allows it to be manageable.

It is not difficult to generate candidate interactions which are invariant
under chiral SU(2) transformations. For the purpose of illustration, we
list the following two-derivative, four-derivative and six-derivative terms
in the exponential parameterization,

Tr
(
∂µU∂

µU †
)
, Tr

(
∂µU∂νU

†
)
· Tr

(
∂µU∂νU †

)
,

Tr
(
∂µU∂

µU †
)
· Tr

(
∂νU ∂νU †

)
.

(4.2)

There can be no derivative-free terms in a list such as this because
Tr

(
U U †) = 2 is a constant. It is clear that one can generate innumer-

able similar terms with arbitrary numbers of derivatives. The general
lagrangian can be organized by the dimensionality of the operators,

L = L2 + L4 + L6 + L8 + . . .

=
F 2

4
Tr

(
∂µU∂

µU †
)
+ ℓ1[ Tr

(
∂µU∂

µU †
)
]2

+ ℓ2Tr
(
∂µU∂νU

†
)
· Tr

(
∂µU∂νU †

)
+ . . . .

(4.3)

The important point is that, at sufficiently low energies, the matrix el-
ements of most of these terms are very small since each derivative be-
comes a factor of the momentum q when matrix elements are taken. It
follows from dimensional analysis that the coefficient of an operator with
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n derivatives behaves as 1/Mn−4, whereM is a mass scale which depends
on the specific theory. Therefore the effect of an n-derivative vertex is of
order qn/Mn−4, and at an energy small compared to M , large-n terms
have a very small effect. At the lowest energy, only a single lagrangian,
the one in Eq. (3.3) with two derivatives, is required. We shall call this
an ‘O(E2)’ contribution in subsequent discussions. The most important
corrections to this involve four derivatives, and are therefore ‘O(E4)’. In
practice then, the infinity of possible contributions is reduced to only a
small number. The coefficients of these terms are not generally known,
and must thus be determined phenomenologically. However, once fixed
by experiment (or by matching to the full theory if possible) they can be
used to allow predictions to be made for a variety of reactions.

Power counting and loops

It would appear that loop diagrams could upset the dimensional counting
described above. This might happen in the calculation of a given loop
diagram if, for example, two of the momentum factors from an O(E4)
lagrangian are involved in the loop and are thus proportional to the loop
momentum. Integrating over the loop momentum apparently leaves only
two factors of the ‘low’ energy variable. It would therefore seem that for
certain loop diagrams, an O(E4) lagrangian could behave as if it were
O(E2). If this happened, it would be a disaster because arbitrarily high
order lagrangians would contribute at O(E2) when loops were calculated.
As we shall show, this does not occur. In fact, the reverse happens. When
O(E2) lagrangians are used in loops, they contribute to O(E4) or higher.

Before we give the formal proof of this result, let us note that we saw
this effect in the linear sigma model calculation above. We started by
using the order E2 lagrangian in the loop diagram and the result was the
renormalization of a lagrangian at order E4. It is also straightforward
to demonstrate why this occurs. Consider a pion loop diagram, as in
Fig. IV–2. From the explicit form displayed in Eq. 3.5, we see that

M(loop)

π+π0→π+π0
≡ 1

v4
I(p+, p0, p

′
+) (4.4)

where I is the loop integral with the factor v−4 extracted. Counting
powers of energy factors is most easily done in dimensional regulariza-
tion. The loop integral contains no dimensional factors other than p+,
p0 and p′+. Since, in four dimensions it has the overall energy unit E4, it
must therefore be expressible as fourth order in momentum. Despite the
loop integration, the end result is expressed only in terms of the external
momenta. These momenta are small, and hence all the energy factors
involved in power counting are taken at low energy. In dimensional reg-
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ularization, there can also be a dependence on the arbitrary scale µ,∫
d4ℓ→ µ4−d

∫
ddℓ , (4.5)

but in the limit d → 4 this occurs only in dimensionless logarithms such
as ln(E2/µ2). Thus, the order of momentum can be found by counting
the factors of 1/v2 which occur for every vertex from the lowest order
lagrangians. Each factor of 1/v2 must be accompanied by momenta in the
numerator in order to produce a dimensionless amplitude. Each vertex
in a diagram contributes powers of 1/v2, and higher order loop diagrams
require more vertices. Thus every time a loop is formed, the overall
momentum power of the amplitude must increase rather than decrease.

We have also seen that any divergences present can be handled in the
usual way, by renormalizations of the parameters in the theory. Again
the uncertainty principle comes into play - the divergences come from the
extreme high energy part of the calculation and thus they must look like
some term in a local lagrangain. If the original effective lagrangian which
we have written down is indeed the most general one consistent with
the given symmetry, then it must have enough parameters of the right
form to encompass any divergences which occur. In particular, our power
counting argument tells us that when L2 is used in one-loop diagrams, the
divergences are of order E4 and should be capable of being absorbed into
the parameters of that order. Since the parameters are generally unknown
and are to be determined phenomenologically, the only difference this
makes is to cast physical results in terms of the renormalized parameters
instead of the bare ones.

Weinberg’s power counting theorem

To prove this result [We 79b], consider some diagram with a total of NV

vertices. Then letting Nn be the number of vertices arising from the
subset of effective lagrangians which contain n derivatives (e.g. N4 is
the number of vertices coming from four-derivative lagrangians), we have
NV = ΣnNn. The overall energy dimensionality of the coupling constants
is thus MNC with

NC =
∑
n

Nn(4− n) , (4.6)

where M is a mass scale entering into the coefficients of the effective
lagrangian (e.g. the quantity v in the sigma model). Each pion field
comes with a factor of 1/v, so that associated with NE external pions

and NI internal pion lines is an energy factor (1/M)2NI+NE . (Recall that
two pions must be contracted to form an internal line.) However, the
number of internal lines can be eliminated in terms of the number of
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vertices and loops (NL),

NI = NL +NV − 1 = NL +
∑
n

Nn − 1 . (4.7)

Any remaining dimensional factors must be made up of powers of the en-
ergy E times a dimensionless factor of E/µ where µ is the scale employed
for renormalizing the coupling constants. (When using dimensional reg-
ularization, these factors of E/µ enter only in logarithms.) Thus the
overall matrix element is composed of energy factors

M ∼ (M)
∑

n
Nn(n−4) 1

MNE+2NL+2
∑

n
Nn−2

EDF (E/µ)

∼ (Mass or Energy)4−NE ,

(4.8)

where the second line is the overall dimension of an amplitude with NE

external bosons. The renormalization scale µ can be chosen of the order of
E so no large factors are present in F (E/µ). Overall the energy dimension
is then

D = 2 +
∑
n

Nn(n− 2) + 2NL . (4.9)

A diagram containing NL loops contributes at a power E2NL higher than
the tree diagrams. This theorem is of great practical consequence. At
low energy, it allows one to work with only small numbers of loops. In
particular, at O(E4) only one-loop diagrams generated from L2 need to
be considered.

The end result is a very simple rule for counting the order of the energy
expansion. The lowest order (E2) behavior is given by the two-derivative
lagrangians treated at tree level. There are two sources at the next order
(E4): (i) the O(E2) one-loop amplitudes, and (ii) the tree-level O(E4)
amplitudes. When the coefficients of the E4 lagrangians are renormalized,
finite predictions result. Other effective field theories will have power
counting rules analogous to this one appropriate for chiral theories.

The limits of an effective field theory

The effective field theory of the linear sigma model is valid for energies
well below the mass of the scalar particle in the theory, the σ or S. Once
there is enough energy to directly excite the S particle, it is clear that
the effective theory is inadequate. This energy scale is visible even within
the effective theory itself. Scattering matrix elements are an expansion
in the energy, with a schematic form

M ∼ q2

v2

[
1 +

q2

m2
σ

+ . . .

]
(4.10)
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and the scale of the energy dependence is the determined largely by the
scalar mass. As the energy increases the corrections to the lowest or-
der result grow and eventually all terms in the energy expansion become
equally important and the effective theory breaks down. Thus the effec-
tive theory reveals its own limits.

In more general effective field theories, there is always a separation of
the heavy degrees of freedom, which are integrated out from the theory,
and the light degrees of freedom which are treated dynamically. In many
instances, the natural separation scale is set by a particle’s mass, as
in the linear sigma model. We will see that in the case of QCD, the
meson resonances such as the ρ(770) do not appear explicitly in the low
energy effective theory. Therefore, these have been integrated out and
help define the limits of the effective field theory. In other cases, we
could integrate some of the high momentum modes of certain fields, while
still keeping the low momentum modes of these same fields as active
dynamical participants in the low energy theory. This is done for the
effective hamiltonian for weak decays, where we integrate out the high
energy modes of the gluonic fields. In these cases, the scale that we have
used to separate high and low energy defines the limit of validity of the
effective field theory.

Let us also address a rather subtle point concerning the energy scale of
the effective theory. While we regularly use this idea of an energy scale
defining the limit of validity of the effective theory, there are times that we
do not apply this separation fully. In loop diagrams, if we wanted to only
include loop effects below a certain energy scale, we would need to em-
ploy a cut-off in the loop integral. This is often inconvenient and if done
carelessly could upset some of the symmetries of the theory. Moreover,
the presence of an additional dimensional factor in loop diagrams would
upset some of the power counting arguments described above. Most of-
ten practical calculations are performed using dimensional regularization.
This regulator has no knowledge of the energy scale of the theory and
thus loop diagrams will in general include effects from energies where the
effective theory is not valid. However, again the uncertainty principle
comes to our rescue. Even if these spurious high energy contributions are
not correct, we know that their effect is equivalent to a local term in the
effective lagrangian. Any mistakes made in the loop can be corrected by
modifying the coefficients of the terms in the effective lagrangian. Careful
application of the procedures for matching or measuring the parameters
will return the the same physical predictions independent of the choice
of regularization scheme.

IV–5 Symmetry breaking
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Effective lagrangians can be used not only in the limit of exact sym-
metry but also to analyze the effect of small symmetry breaking. Let
us first return to the sigma model for an illustration of the method, and
then consider the general technique.

The SU(2)L×SU(2)R symmetry of the sigma model is explicitly broken
if the potential V (σ,π) is made slightly asymmetric, e.g. by the addition
of the term

Lbreaking = aσ =
a

4
Tr (Σ + Σ+) (5.1)

to the basic lagrangian of Eq. (1.4). To first order in the quantity a, this
shifts the minimum of the potential to

v =

√
µ2

λ
+

a

2µ2
, (5.2)

and produces a pion mass

m2
π =

a

v
. (5.3)

Although the latter result can be found by using the linear representation
and expanding the fields about their vacuum expectation values, it is
easier to use the exponential representation,

Lbreaking =
a

4
(v + S)Tr (U + U †) =

a

4
(v + S)Tr

(
2−

(τ · π
v

)2
+ . . .

)
= a(v + S)− a

2v
π · π + . . . = a(v + S)− m2

π

2
π · π + . . . .

(5.4)
The chiral SU(2) symmetry is seen to be slightly broken, but the vectorial
SU(2) isospin symmetry remains exact.

As we have seen, the O(E2) lagrangian is obtained by setting S = 0,

L2 =
v2

4
Tr

(
∂µU∂

µU †
)
+
m2
π

4
v2Tr (U + U †) . (5.5)

Higher order terms will contain products like[
m2
π Tr (U + U †)

]2
, m2

π Tr (U + U †) · Tr (∂µU∂µU †), . . . , (5.6)

and can be obtained by integrating out the field S as was done in Sect. IV–
2. It is important to realize that the symmetry breaking sector also has
a low energy expansion, with each factor of m2

π being equivalent to two
derivatives. If m2

π is small, the expansion is a dual expansion in both the
energy and the mass.
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If we encounter a theory more general than the sigma model, the effect
of a small pion mass can be similarly expressed in low orders by,

Lbreaking = a1m
2
π Tr (U + U †) + a2

[
m2
π Tr (U + U †)

]2
+ a3m

2
π Tr (U + U †)Tr (∂µU∂

µU †) + a4m
2
π Tr

[
(U + U †)∂µU∂

µU †
]
,

(5.7)
with coefficients that are generally not known. An important consid-
eration is the symmetry transformation property of the perturbation.
The symmetry breaking term of Eq. (5.1) is not invariant under separate
left-handed and right-handed transformations but only under those with
L = R. All the terms in Eq. (5.7) have this property.

Other symmetry breakings can be analyzed in a manner analogous to
the treatment just given of the mass term. One identifies the symme-
try transformation property of the perturbing effect and writes the most
general effective lagrangian with that property. Most often the pertur-
bation is treated to only first order, but higher order behavior can also
be studied. We shall encounter another example of this in our study of
weak decays.

IV–6 Matrix elements of currents

There is an elegant technique which allows one, at a minimal increase
in complexity, to calculate matrix elements of currents from a chiral ef-
fective lagrangian [GaL 84,85a]. The idea is to add to the lagrangian
terms containing external sources coupled to the currents in question.
Construction of the effective lagrangian, including source terms, then al-
lows the current matrix elements to be easily identified. We shall explain
this technique here, and use it extensively in our discussion of QCD in
subsequent chapters.

First consider how current matrix elements are identified in a path
integral framework. We have seen in Chap. III (see also App. A) that by
adding a source coupled to the desired current, matrix elements can be
obtained from differentiation of the path integral, e.g. Eqs. (III–2.2), (III–
2.4). For example, we can modify three-flavor QCD by adding sources
to obtain

L = −1

4
F a
µνF

µν
a + ψ̄i /Dψ − ψ̄γµ

1 + γ5
2

ℓµψ − ψ̄γµ
1− γ5

2
rµψ

− ψ̄L(s+ ip)ψR − ψ̄R(s− ip)ψL ,
(6.1)

where ℓµ, rµ, s, p are 3× 3 matrix source functions expressible as

ℓµ = ℓ0µ+ℓ
a
µλ

a , rµ = r0µ+r
a
µλ

a , s = s0+saλa , p = p0+paλa , (6.2)

with a = 1, . . . , 8. The lagrangian in Eq. (6.1) reduces to the usual QCD
lagrangian in the limit ℓµ = rµ = p = 0, s = m, where m is the 3 × 3
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quark mass matrix. The electromagnetic coupling can be obtained with
the choice ℓµ = rµ = eQAµ, where Aµ is the photon field and Q is the
electric charge operator defined in units of e. Various currents can be
read off from the lagrangian, such as the left-handed current

JkLµ(x) = − ∂L
∂ℓµk(x)

= ψ̄(x)γµ
1 + γ5

2
λkψ(x) (6.3)

or the scalar density

ψ̄(x)ψ(x) = − ∂L
∂s0(x)

. (6.4)

Moreover, matrix elements of these currents can be formed from the path
integral by taking functional derivatives. The simplest example is⟨

0
∣∣ψ̄(x)ψ(x)∣∣ 0⟩ = i

δ lnZ

δs0(x)

∣∣∣∣
ℓ=r=p=0

s=m

, (6.5)

while other examples appear in Sect. III–2.

Matrix elements and the effective action

A low energy effective action for the Goldstone bosons of this theory will
be a functional of the external sources. One way to define the connection
of the effective action with QCD is to consider the effect of the sources
in QCD,

eiW (ℓµ,rµ,s,p) =

∫
[dψ][dψ][dAaµ] e

i
∫
d4x LQCD(ψ,ψ,Aa

µ,ℓµ,rµ,s,p) . (6.6)

At low energy, all heavy degrees of freedom can be integrated out and
absorbed into coefficients in the effective action W . However, the Gold-
stone bosons propagate at low energy, and they must be explicitly taken
into account. One then writes a representation of the form

eiW (ℓµ,rµ,s,p) =

∫
[dU ] ei

∫
d4x Leff (U,ℓµ,rµ,s,p) , (6.7)

where as usual U contains the Goldstone fields. This form then allows
inclusion of all low energy effects while maintaining the symmetries of
QCD.

The lagrangian of Eq. (6.1) has an exact local chiral SU(3) invariance
if we have the external fields transform in the same way as gauge fields.
In particular, the transformations

ψL → L(x)ψL , ψR → R(x)ψR ,

ℓµ → L(x)ℓµL
†(x) + i∂µL(x)L

†(x) ,

rµ → R(x)rµR
†(x) + i∂µR(x)R

†(x) ,

(s+ ip) → L(x)(s+ ip)R†(x)

(6.8)
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provide an invariance for any L(x), R(x) in SU(3).
In constructing the effective action, these invariances must be included.

This is easy to do if ℓµ and rµ enter in the same way as gauge fields. In
particular, upon defining a covariant derivative

DµU = ∂µU + iℓµU − iUrµ , (6.9)

and field strength tensors

Lµν = ∂µℓν − ∂νℓµ + i[ℓµ, ℓν ] ,

Rµν = ∂µrν − ∂νrµ + i[rµ, rν ] ,
(6.10)

we obtain the following covariant responses to local transformations:

U → L(x)UR†(x) ,

Lµν → L(x)LµνL
†(x) ,

DµU → L(x)DµUR
†(x) ,

Rµν → R(x)RµνR
†(x) .

(6.11)

The effective action is then expressed in terms of these quantities. At
order E2, there are only two terms in the effective lagrangian,

L2 =
F 2
π

4
Tr

(
DµUD

µU †
)
+
F 2
π

4
Tr

(
χU † + Uχ†

)
(6.12)

where

χ ≡ 2B0(s+ ip) , (6.13)

and B0 is a constant with the dimension of mass. In the limit ℓµ =
rµ = p = 0, s = m, this is the same effective lagrangian with which we
have been dealing in the SU(2) examples, with the identification m2

π =
(mu +md)B0. Note that this usage requires B0 to be positive.

Having constructed the effective action, we can obtain a number of
interesting matrix elements. For example, use of Eq. (6.5) provides the
identification of the vacuum scalar-density matrix element as⟨

0
∣∣ψ̄iψj∣∣ 0⟩ = −F 2

πB0δij (6.14)

to this order in the effective lagrangian. Similarly, use of Eq. (6.3) reveals
the left-handed current to be

Lkµ = −iF
2
π

2
Tr

(
λkU∂µU

†
)

. (6.15)

One other advantage of the source method is to allow the use of the
equations of motion. The standard Noether procedure for identifying
currents does not work if the equations of motion are employed in the
lagrangian. To become convinced of this, one can consider the following
exercise. We examine the response of the two trial lagrangians,

L1 = φ∗ φ , L2 = −m2φ∗φ (6.16)
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to a phase transformation φ→ eiαφ. The first contributes to the Noether
current while the second does not. However, these two forms are iden-
tical on-shell if φ satisfies the Klein-Gordon equation. In an effective
lagrangian which is meant to be used always on-shell it is often conve-
nient to drop terms which vanish by virtue of the equations of motion.
The use of source fields as described above avoids this problem.

IV–7 Effective field theory of regions of a single field

In our presentation earlier in this Chapter, the construction of an effec-
tive field theory was described by the integrating out of heavy particles,
while leaving the light particles as dynamical degrees of freedom. How-
ever, often one can make an effective field theory from a single particle.
In this case, certain energy regions of the field are treated as heavy and
others are light, and one retains the light regions in the effective field
theory. Indeed, sometimes there are multiple regions that are “light” in
some sense, and one splits the original single field into multiple fields.
This section provides some of the background for such decompositions.

The simplest example of the division of a single field into ‘heavy’ and
‘light’ is in the non-relativistic reduction. When the energy is small,
the anti-particle degrees of freedom are heavy and can be removed from
the theory, leaving a non-relativistic particle description. For example,
if one redefines a four-component Dirac field ψ into upper and lower
two-component fields, ψu and ψℓ by factoring out the leading energy
dependence at low energy via

ψ(x, t) = e−imt
(
ψu(x, t)

ψℓ(x, t)

)
, (7.1)

ψu will behave as a non-relativistic field and ψℓ will account for the two
heavy degrees of freedom. The free Dirac lagrangian shows this separa-
tion,

L = ψ̄(i/∂ −m)ψ

= ψ∗
ui∂tψu + ψ∗

ℓ [i∂t + 2m]ψℓ + ψ∗
uiσ · ∇ψℓ + ψ∗

ℓ iσ · ∇ψu
. (7.2)

While no approximation has yet been made by this redefinition, the non-
relativistic limit is taken by assuming that the residual energy dependence
is small compared to the mass (i.e. one neglects ∂t compared to 2m).
One can then integrate out the lower component through its equation of
motion,

(i∂t + 2m)ψℓ ≈ 2m ψℓ = iσ · ∇ψu , (7.3)
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leaving the upper component as the active non-relativistic degree of free-
dom.

L = ψ∗
ui∂tψu −

(∇ψ∗
u) · ∇ψu
2m

. (7.4)

With inclusion of the interactions, this can lead to a full non-trivial effec-
tive field theory. A well-developed example of this is the Non-Relativistic
QCD (NRQCD) effective field theory[CaL 86]. We will also return to this
procedure in more generality in the discussion of Heavy Quark Effective
Theory (HQET ) in Chapter XIII.

A second common way of splitting up a single field is to integrate
out the high momentum portions of a field. This logic is often called
Wilsonian [Wi 69]. Imagine splitting the momenta in a problem into those
above an energy scale Λ and those below this scale. By first performing
the calculation of the high energy portion, one is left with an effective
field theory. The operators defining that theory will carry factors, the
Wilson coefficients, that depend on the scale Λ. This means that one
obtains a set of new operators On in the lagrangian

L = . . . +
∑
n

Cn(Λ)On , (7.5)

where Cn(Λ) are the Wilson coefficients and the series is infinite. The
operators are local because they capture high energy physics, and their
matrix elements will depend on the separation scale, ⟨On⟩ = ⟨On(Λ)⟩.
One regularly uses the renormalization group to describe the running of
the Wilson coefficients with changes of scale. The low energy theory re-
mains a full field theory and one must calculate the full quantum effects
in the matrix elements of On up to the scale Λ. When the high energy
physics in Cn and the low energy physics in the matrix elements of On

are properly matched, in the end the separation scale Λ will disappear
from the description. Nevertheless, this separation is often useful. For
example, in QCD the high energy behavior may be reliably calculated
in perturbation theory, while the low energy behavior may be best ac-
complished with lattice calculations. Examples appearing in this book
include the Wilson coefficients of the non-leptonic weak hamiltionian, cf.
Sect. VIII–3, and those used in QCD sum rules, cf. Sect. XI–5.

In practice, however, we most often do not use a Wilsonian separa-
tion scale Λ, but instead employ dimensional regularization. Dimensional
regularized loop integrals do not carry information about any particular
scale, and therefore extend over all energies. The extension to d < 4
damps the high energy divergences in a scale-independent way. Nonethe-
less, this procedure works for logarithmically running Wilson coefficients.
Aside from the momenta, the only scale in a dimensionally regularized
integral is the µ2ϵ inserted in front of the loop integral. This ends up
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appearing in the final answer as lnµ2 when expanded close to d = 4. The
fact that cutoff regularization and dimensional regularization have the
equivalence

lnΛ2 ⇔ 1

ϵ
+ lnµ2 (7.6)

allows the scale µ to be a proxy for the separation scale Λ. However, the
correspondence of µ with a Wilsonian separation scale does not hold for
Wilson coefficients with power-law running [CiDG 00].

For a yet more subtle example, consider the interaction of a high energy
massless particle in the vertex diagram of Fig. IV–3 . For the purposes
of this example, let us consider these as scalars and the current vertex as
J = φ2/2. We can analyse the resultant scalar vertex integral,

I = µ4−d
∫

ddk

(2π)d
1

(p+ k)2
1

k2
1

(p′ + k)2
, (7.7)

in the limit where p2 ∼ p′2 ≪ Q2 = (p − p′)2. The only scales in this
problem are Q2, which is treated as a large scale, and p2 ∼ p′2 which is
the small scale. The relative size is labeled λ2 ∼ p2/Q2 ∼ p′2/Q2.

This integral can be analysed by the method of regions [BeS 98, Sm
02]∗.. In this technique, one identifies all the important momentum re-
gions of the loop integral, and makes appropriate approximations within
each region. A portion of the integral will have all the components of the
loop momenta of order Q and higher. This will be called the hard region.
A region labeled soft has all the components much smaller than Q. In
addition, there will be regions where the momentum is of order Q in the
direction of p or p′. In these collinear regions, some invariant products
can be smaller than Q2.

In order to quantify this one take light-like reference four-vectors

nµ = (1, 0, 0, 1), n̄µ = (1, 0, 0,−1), n2 = n̄2 = 0, n·n̄ = 2 . (7.8)

Fig. IV–3 The scalar vertex diagram analysed in the text.

∗ This example and the treatment of it follows the lectures of [Be 10].
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For an arbitrary four-vector expressed using these and a transverse com-
ponent,

V µ = n · V n̄
µ

2
+ n̄ · V n

µ

2
+ V µ

⊥ ≡ V+
n̄µ

2
+ V−

nµ

2
+ V µ

⊥ , (7.9)

the invariant product is

V 2 = (n · V )(n̄ · V ) + V 2
⊥ = V+V− + V 2

⊥

AµB
µ =

1

2
(A+B− +A−B+) +A⊥ ·B⊥ .

(7.10)

These are useful because we can choose a frame with p along n and with p′

along n̄, and we can refer to the n direction as ‘right’ and the n̄ direction
as ‘left’. This allows us to classify the different regions. Of the original
momenta, we have

(V+, V−, V⊥)

p ∼ (λ2, 1, 0) Q

p′ ∼ (1, λ2, 0) Q

Q ∼ (1, 1, 0) Q .

(7.11)

Q is a hard momentum because it takes a hard interaction to change an
energetic right-moving particle in to one moving left. Using this decom-
position, one can identify the regions of the loop momentum

(k+, k−, k⊥)

k ∼ (1, 1, 1) Q hard

k ∼ (λ2, 1, λ) Q collinear R

k ∼ (1, λ2, λ) Q collinear L

k ∼ (λ2, λ2, λ2) Q soft .

(7.12)

In each region, one can drop small momentum components in terms
of large ones. For example, when k is in the hard region, one can drop
p2, p′2, k−p+, k+p

′
−, which are all of order λ2, in order to obtain∗

Ihard = µ4−d
∫

ddk

(2π)d
1

(k2 + iϵ)(k2 + k−p+ + iϵ)(k2 + k+p′− + iϵ)

=
iΓ(1 + ϵ)

(4π)d/2Q2

[
1

ϵ2
+

1

ϵ
ln

µ2

−Q2
+

1

2
ln2

µ2

−Q2
− π2

6

]
.

(7.13)

∗ The integrals of this section are displayed in the useful appendix of [Sm 02]. See also [Sm 12]
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Similarly in right-collinear region, one can expand (k + p′)2 = k−p
′
+ +

O(λ2), such that

Icol−R = µ4−d
∫

ddk

(2π)d
1

(k2 + iϵ)((k + p)2 + iϵ)(k−p′+ + iϵ)

=
iΓ(1 + ϵ)

(4π)d/2Q2

[
− 1

ϵ2
− 1

ϵ
ln

µ2

−p′2
+

1

2
ln2

µ2

−p′2
+
π2

6

] (7.14)

An observation that will be relevant for the eventual construction of an
effective theory is that when the exchanged propagator carrying momen-
tum k is in the right collinear region, the other propagator on the p side
is also collinear, but the third propagator on the p′ side is hard. A similar
result is obviously found when k is in the left collinear region, obtained
by replacing p by p′. Finally in the soft region, one keeps only terms of
order λ2, finding

Isoft = µ4−d
∫

ddk

(2π)d
1

(k2 + iϵ)(k−p+ + p2 + iϵ)(k+p′− + p′2 + iϵ)

=
iΓ(1 + ϵ)

(4π)d/2Q2

[
1

ϵ2
+

1

ϵ
ln

µ2 Q2

−p2 p′2
+

1

2
ln2

µ2 Q2

−p2 p′2
+
π2

6

]
.

(7.15)

If one tries to identify other regions besides these and makes the corre-
sponding simplifications of the loop integral, one ends up with a scale-less
integral which vanishes within dimensional regularization. For example,
if one considers the region where k scales as k ∼ (λ2, λ2, λ)∗, one would
use k2 ∼ k2⊥ and keep terms of order λ2 in each propagator

I ′ =

∫
ddk

(2π)d
1

(k2⊥ + iϵ)(k−p+ + p2 + k2⊥ + iϵ)(k+p′− + p′2 + k2⊥ + iϵ)

=
1

p+p′−

∫
ddk′

(2π)d
1

(k2⊥ + iϵ)(k′− + iϵ)(k′+ + iϵ)

= 0 ,
(7.16)

where in the second line we have defined shifted variables k′− = k−+(p2+
k2⊥)/p+ and k′+ = k+ + (p′2 + k2⊥)/p

′
−, with the result being an integral

without any scale. Such integrals are set to zero within dimensional
regularization.

The sum of the four subregions yields the correct total integral,

I =
i

16π2Q2

[
ln
Q2

p2
ln
Q2

p′2
+
π2

3

]
(7.17)

∗ This region is referred to as the Glauber region. The treatment of the integral given in the text
appears adequate for this example, although the understanding of the Glauber region is still
evolving [BaLO 11].
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up to terms suppressed by powers of λ. As expected this result is fi-
nite, even though the integrals from the individual regions are not. The
approximations that we made lead to infrared divergences in the hard
integral, and ultraviolet divergences in the others. However, these cancel
when added together.

The other interesting feature of this procedure is that we have not
restricted the integration ranges when calculating the integrals for the
different regions. The full integration range is used in each case. The
reason that this does not amount to double counting within dimensional
regularization is that if there is a single unique scale within the integral,
as has been deliberately constructed in each region, the integral is deter-
mined by momenta around that scale. This is the key observation that
allows the method of regions to work. By constructing approximations
that scale in unique fashions, one can isolate the physics of that region
alone∗. That this actually happens in these integrals can be seen from
the above integral where the factors of Q2, p2 and p2p′2/Q2 all signal the
dominant scale in the respective diagrams, showing that the effects come
from different regions of the momentum integration.

One can convert the analysis of the method of regions into an effective
field theory whose applicability extends beyond this particular example.
The initial field can be divided up into new effective fields for each of the
important regions. The goal is to choose these fields and their interac-
tions to yield the same results as the method of regions analysis outlined
above. The hard momentum region can be integrated out completely
and replaced by effective operators of the light fields. These operators
will come with Wilson coefficients to ensure the matching with the full
calculation. However, the dynamical light fields need to come in three va-
rieties for the different light momentum regions. Thus the original scalar
field φ(x) now comes in three varieties, φ(x) = φcR(x) + φcL(x) + φs(x).
The interactions of the light fields among themselves is relatively simple
to construct. If the interaction vertex of the original theory was a simple
φ3 vertex, we expand that to include the possible interaction between the
light fields,

−L =
g

3
φ3 → g

3
φ3
cR +

g

3
φ3
cL +

g

3
φ3
s + gφ2

cRφs + gφ2
cLφs (7.18)

Vertices not listed above, such as φcRφ
2
s, are ones which cannot occur due

to momentum conservation (e.g. a collinear particle cannot split into two
soft particles).

∗ In cases where regions are defined which have overlapping contributions there are also methods
for cleanly separating the regions [MaS 07].
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Fig. IV–4. a) An interaction of collinear particles through a hard propagator,
(b) the effective local vertex representing this interaction at low energy

It is somewhat more subtle to choose the other effective operators and
their Wilson coefficients. For the scalar example shown above, the ‘cur-
rent’ carrying the momentum Q in the full theory is J = φ2/2. Since it
transfers this large momentum it can connect φcR to φcL such that we
expect a vertex J ∼ φcRφcL. However, in addition we need to recall that
we have integrated out the hard scalars. This leads to additional vertices.
For example, in the diagram of Fig IV–4(a) the propagator is hard be-
cause it carries the momenta of both left-moving and right-moving fields
which couple to it at the lower vertex. When the other fields are light,
this propagator shrinks to a point vertex as in Fig. IV–4(b). This, then,
is a new contribution to the current operator, and we expect that the
current has the form

J = C2φcRφcL + C3φ2
cRφcL + C′

3φcRφ
2
cL + ... (7.19)

where C2 and C3 are the Wilson coefficients. Calculation from the original
theory shows that to this order

C2 = 1 + g2Ihard , C3 =
2g

k−p′+ − iϵ
, C ′

3 =
2g

k+p− − iϵ
, (7.20)

where Ihard refers back to Eq. (7.13).
At this stage, we can reproduce the original vertex calculation using

the effective theory, by the calculation of the diagrams of Fig. IV–5. The
diagrams of Fig. IV–5 (a),(b),(c) refer to the new vertices given in Eq.
(7.20), while Fig. IV–5 (d) refers to the soft contribution of Eq. (7.15).

Fig. IV–5. The diagrams involving the light fields reconstructing the scalar
vertex
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By construction, one can see how all four of the regions of the original
diagram are reproduced. We note how the hard propagators that occur
when k is in one of the collinear regions have been accounted for by a new
local vertex in the current operator, with the Wilson coefficient describing
the effect of the hard propagator.

The reader may object that the construction of the effective theory
was more trouble than evaluating the original diagram. However, once
we have developed the effective theory, we can apply it in multiple new
contexts. The example above is analogous to the Soft Collinear Effec-
tive Theory (SCET) of QCD [BaFPS 01]. Similar techniques are used
in the various realizations of Non-Relativistic QCD (NRQCD) [CaL 86,
PiS 98, BrPSV 05]. Outside of the Standard Model, related methods are
applied in the classical effective field theory of General Relativity [GoR
06] which has been used to systematize the classical treatment of gravi-
tational radiation from binary systems [PoRR 11]. Further development
of the method of regions and threshold expansions can be found in [BeS
98, Sm 02].

IV–8 Effective lagrangians in QED

We have explored in some detail the structure of effective field theory
by using chiral symmetry as an example. However, this is not meant to
imply that effective lagrangians are useful only in that one context. In
fact, they can be applied to a wide variety of situations. Here, we apply
the technique to QED.

Consider situations in which the photon’s four-momentum is small com-
pared to the electron mass. In such cases, the electron and other fermions
cannot be produced directly, but instead influence the physics of photons
only through virtual processes. The lowest order diagrams, i.e. those
which contain a single electron loop, with increasing numbers of exter-
nal photon legs are shown in Fig. IV–6. Note that the one-loop diagram
containing three photons, or indeed any odd number of photons, vanishes
by virtue of charge conjugation invariance. This is true to all orders in
the coupling e, and is refered to as Furry’s theorem. Diagrams like those
in Fig. IV–6 have effects at low energy which are typically calculated in
perturbation theory. The associated amplitudes have coefficients which
scale as some power of the inverse electron mass. They can be generated
by means of an effective lagrangian, as we shall now discuss.

Let us seek a description which eliminates the electron degrees of free-
dom. That is, we wish to write a lagrangian which involves only photons,
but nevertheless includes effects like the ones in Fig. IV–6. The result
must of course be gauge invariant. The procedure may be defined by the
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Fig. IV–6 Photon amplitudes containing a single fermion loop.

path integral relation∫
[dAµ] exp

[
i

∫
d4x Leff(Aµ)

]
≡

∫
[dAµ][dψ][dψ̄] exp

[
i
∫
d4x LQED(Aµ, ψ, ψ̄)

]∫
[dψ][dψ̄] exp

[
i
∫
d4x L0(ψ, ψ̄)

] ,

(8.1)

where LQED is the full QED lagrangian, and L0 is the free fermion la-
grangian. Thus Leff has precisely the same matrix elements for photons
as does the full QED theory. Specifically, it includes the virtual effects
of electrons. The techniques described in App. A–5 enable us to formally
express the content of Eq. (8.1) as [Sc 51],∫

d4x Leff(Aµ) = −1

4

∫
d4x FµνF

µν − iTr ln

[
i/D −m

i/∂ −m

]
. (8.2)

This form, although formally correct, does not readily lend itself to phys-
ical interpretation. However, we can determine various interesting effects
directly from perturbation theory. For example, the vacuum polarization
of Fig. IV–6(a) modifies the photon propagator, i.e. the two-point func-
tion. From Eqs. (II–1.26), (II–1.29), we determine the result for a photon
of momentum q to be

iΠ̂µν(q) = i
α

15π
(qµqν − gµνq

2)
q2

m2
+ . . . . (8.3)

The essence of the effective lagrangian approach is to represent such in-
formation as the matrix element of a local lagrangian. In the present
example, we find that the term in Eq. (8.3) corresponds to the interac-
tion

Leff =
α

60πm2
Fµν F µν , (8.4)

where ≡ ∂µ∂
µ.

The calculation of Fig. IV–6(b) is a somewhat more difficult, but still
straightforward, exercise in perturbation theory. We shall lead the reader
through a calculation using path integrals in a problem at the end of this
chapter. It too can be represented as a local lagrangian, and is usually
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named after Euler and Heisenberg [ItZ 80]. One finds the full result to
one-loop order to be

Leff(Aµ) = −1

4
FµνF

µν +
α

60πm2
Fµν F µν

+
α2

90m4

[
(FµνF

µν)2 +
7

16
(FµνF̃

µν)2
]
+ . . . ,

(8.5)

where F̃µν ≡ ϵµναβF
αβ . Corrections to this effective lagrangian can be

of two forms, (i) even at one loop there are additional terms of higher
dimension

Fµν
2

m4
F µν , Fµν

m6
F µνFαβF

αβ ,
1

m8
(FµνF

µν)3 , . . . , (8.6)

involving either more fields or more derivatives, or (ii) the coefficients
of these operators can receive corrections of higher order in α through
multiloop diagrams. We see here an example of the energy expansion
which we have discussed at length earlier in this chapter. In this case it
is an expansion in powers of q2/m2. The effective lagrangian of Eq. (8.5)
can be used to compute aspects of low energy photon physics such as the
low energy contribution of the vacuum polarization process or the matrix
element for photon-photon scattering.

IV–9 Effective lagrangians as probes of new physics

One of the most common and important uses of effective lagrangians
is to parameterize how new physics at high energy may influence low
energy observables. The general procedure can be abstracted from our
earlier discussion. Remember that one is trying to represent the low
energy effects from a ‘heavy’ sector of the theory. This is accomplished
by employing an effective lagrangian

Leff =
∑
n

Cn On , (9.1)

where the {On} are local operators having the symmetries of the the-
ory and are constructed from fields that describe physics at low energy.
There need be no restriction to renormalizable combinations of fields.
Most often the operators can be organized by dimension. The lagrangian
itself has mass dimension 4, so that if an operator has dimension di the
coefficient must have mass dimension

Cn ∼M4−dn . (9.2)

The mass scale M is associated with the heavy sector of the theory. It
is clear that operators of high dimension will be suppressed by powers of
the heavy mass. To leading order, this allows one to keep a small set of
operators.
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Some applications will involve phenomena for which the dynamics is
well understood. If so, the coefficients of the effective lagrangian can
be determined through direct calculation as in the preceding sections.
Other examples occur in the theory of weak nonleptonic interactions
(cf. Sect. VIII–3) and in the interactions of W -bosons (cf. Sect. XVI–3).
Even more generally, effective lagrangians can also be used to describe the
effects of new types of interactions. In these cases, dimensional analysis
supplies an estimate for the magnitude of the energy scales of possible
new physics. We shall conclude this section by using effective lagrangians
to characterize the size of possible violations of some of the symmetries
of the Standard Model.

Given certain input parameters, the Standard Model is a closed, self-
consistent description of physics up to at least the mass of the Z0, and
is described by the most general renormalizable lagrangian consistent
with the underlying gauge symmetries. What would happen if there
were new interactions having an intrinsic energy scale of several TeV
or beyond? In general, such new theories would be expected to modify
predictions of the Standard Model. The modifications would be described
by non-renormalizable interactions, organized by dimension in an effective
lagrangian description as

Leff = LSM +
1

Λ
L5 +

1

Λ2
L6 + . . . (9.3)

where Ln has mass dimension n and Λ is the energy scale of the new
interaction.

There is a single operator of dimension 5 which will be displayed in
the neutrino chapter. At dimension 6, there are eighty distinct operators
consistent with the gauge symmetries of the Standard Model [BuW 86].
These can generate a variety of effects which deviate from the Standard
Model. For example, the operator

L6(c
′) ≡ c′

Λ2
(Φ†Φ)Wµν ·Wµν , (9.7)

containing the Higgs field Φ and the field tensor Wµν of SU(2) gauge
bosons produces a deviation from unity in the rho-parameter∗,

ρ ≡
M2

W

M 2
Z cos2 θw

= 1− c′
v2

Λ2
+ . . . . (9.8)

The current level of precision, |ρ − 1| ≤ 0.0029 (at 2σ), requires Λ >
4.5 TeV for c′ = 1. Yet another possibility concerns the violation of

∗ More precisely the comparison is with a form of the rho-parameter after radiative corrections.
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flavor symmetries in the Standard Model. The operator,

L6(c
′′) ≡ c′′

Λ2
ēγµ(1 + γ5)µ s̄γ

µ(1 + γ5)d+ h.c. , (9.9)

conserves generational or family number, but violates the separate lepton
number symmetries. It leads to the transition KL → e−µ+ such that

ΓK0
L
→µ+e−

ΓK+→µ+νµ

=

(
c′′

VusGFΛ2

)2

. (9.10)

The present bound, BrK0
L
→µe < 4.7 × 10−12 at 90% confidence level,

requires Λ > 1700 TeV for c′′ ≃ 1. In a similar manner, constraints
on other physical processes imply bounds on their corresponding energy
scales Λ, generally in the range 5 → 5000 TeV.

Dimension-six contact interactions also are searched for at the high-
est energies of the LHC. The effect of the contact interaction becomes
relatively more pronounced at high energy when competing with back-
ground processes which fall off due to propagator effects. For example,
an operator leading to qq̄ → µ+µ−,

L6(g) ≡
g2

2Λ2
q̄LγνqLµ̄Lγ

νµL , (9.11)

becomes increasingly visible over the Drell-Yan process at high energy.
Early LHC results [Aa et al. (ATLAS collab.) 11] bound this interaction
with Λ > 4.5 TeV at 95% confidence for g2/4π = 1; such limits will clearly
improve in the future. Interestingly, some operators are better bounded
by low energy precision experiments and others are better probed at high
energy [Bh et al. 12], demonstrating the value of both lines of research.

Of course, if there is new physics in the TeV energy range, it need
not generate all eighty possible effective interactions. The ones actually
appearing would depend on the couplings and symmetries of the new the-
ory. In addition, the coefficients of contributing operators could contain
small coupling constants or mixing angles, diminishing their effects at
low energy. However, the effective lagrangian analysis indicates that the
continued success of the Standard Model is quite nontrivial and places
meaningful bounds on possible new dynamical structures occurring at
TeV, and even higher, energy scales.

Problems

1) U(1) effective lagrangian
Consider a theory with a complex scalar field φ with a U(1) global
symmetry φ→ φ′ = exp (iθ) φ. The lagrangian will be

L = ∂µφ
∗∂µφ+ µ2φ∗φ− λ(φ∗φ)2
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a) Minimize the potential to find the ground state and write out the
lagrangian in the basis

φ =
1√
2
(v + φ1(x) + iφ2(x))

Show that φ2 is the Goldstone boson.
b) Use this lagrangian to calculate the low-energy scattering of φ2 +
φ2 → φ2+φ2. Show that despite the non-derivitive interactions of the
lagrangian, cancelations occur such that leading scattering amplitude
starts at order p4.
c) Instead of the basis above express the lagrangian using an exponen-
tial basis,

φ =
1√
2
(v +Φ(x))eiχ(x)/v .

Show that in this basis a ‘shift symmetry’ χ→ χ+ c is manifest.
d) Calculate the same scattering amplitude using this basis and show
that the results agree. Note that the fact that the amplitude is of
order p4 is more readily apparent in this basis.

2) Path integrals and the Fermi effective lagrangian
Consider the path integral ZW =

∫
[dW+] [dW+] exp

[
i
∫
d4xLW (x)

]
,

where LW is the W±-boson lagrangian LW = L(free)
W + L(int)

W , with

L(free)
W = −1

2
F+
µνF

µν
− +M 2

WW
+
µ W

µ
− , L(int)

W = − g2√
8

(
W+
µ J

µ
ch + h.c.

)
.

Integrating out the heavy W± fields in ZW leads to an effective inter-
action between charged weak currents called the Fermi model.
a) Show that, upon discarding a total derivative term, one can write

the free field contribution in ZW as∫
d4x L(free)

W =

∫
d4x d4y W †

µK
µν(x, y)W−

ν (y) ,

where Kµν(x, y) ≡ δ(4)(x− y)
[
gµν

(
∂2 +M 2

W

)
− ∂µ∂ν

]
.

b) Further steps allow the path integral to be expressed as

ZW = exp

[
−ig

2
2

8

∫
d4x d4y Jµ†ch (x)∆µν(x, y)J

ν
ch(y)

]
,

where ∆µν(x, y) is the Fourier transform of the W± propagator
∆µν(k) = −

(
gµν − kµkν/M

2
W

)
. Upon expanding this form of ZW

in powers of M−2
W , show that to lowest order,

L(eff)
W (x) = −GF√

2
Jµ†ch (x)J

ch
µ (x) (Fermi model) ,

where the Fermi constant obeys GF/
√
2 ≡ g22/(8M

2
W ).
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3) The Euler-Heisenberg lagrangian: Constant magnetic field
Consider a charged scalar field φ interacting with a constant external
magnetic field B = Bk̂. The corresponding Klein-Gordon equation is
(D2 +m2)φ(x) = 0,where Dµ = ∂µ + ieAµ is the covariant derivative,
and the effective action is then given by

eiSeff (B) =

∫
[dφ(x)][dφ∗(x)]ei

∫
d4x φ∗(x)(D2+m2)φ(x)∫

[dφ(x)][dφ∗(x)]ei
∫
d4x φ∗(x)( 2+m2)φ(x)

= det( 2 +m2)/det(D2 +m2) ,

Seff(B) = iTr ln
D2 +m2

+m2
.

The operation ‘Tr ln’ applied to a differential operator is not a trivial
one and the purpose of this problem is to evaluate this quantity for
the case at hand.
a) Demonstrate that

Seff(B) = iTr

∫ ∞

0
e−m

2s(e− s − e−D
2s) .

b) In order to evaluate the trace we require a complete set of solutions
to the equations

D2φ̄n(x, y, z, t) = λnφ̄n(x, y, z, t) ,

φn(x, y, z, t) = κnφn(x, y, z, t) ,

so that we may write

Seff(B) = i
∑
n

∫ ∞

0

ds

s
e−m

2s(e−κns − e−λns) .

c) With the gauge choice Aµ = (0, Bxĵ ) show that the eigenstates
are

φ(x, y, z, t) = exp i(kxx+ kyy + kzz − ktt) ,

φ̄(x, y, z, t) = exp i(kzz + kyy − ktt)ψn(x− ky/eB) ,

where ψn(x) is an eigenstate of the harmonic oscillator hamilto-
nian, and the eigenvalues are κn = −k2t + k2x + k2y + k2z , λn =

−k2t + k2z + eB(2n+ 1).
d) Rotate to euclidean space and evaluate the trace using box quan-

tization. Taking a box with sides L1, L2, L3 and a time interval
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T, we have

κ :
∑
n

→ L1L2L3T

∫ ∞

−∞

d4k

(2π)4
,

λ :
∑
n

→ L2L3T

∫ eBL1

0
dky

∫ ∞

−∞

dk0dkz
(2π)2

∞∑
n=0

,

where the integration on ky is over all values with x
′ = x− ky/eB

positive.
e) Evaluate the effective action

Seff(B) = L1L2L3T

∫ ∞

0

ds

s

∫ ∞

−∞

dk0dkz
(2π)2

e−(m2+k20+k
2
z)s

×

[
eB

2π

∞∑
n=0

e−eB(2n+1)s −
∫ ∞

−∞

dkxdky
(2π)2

e−(k2x+k
2
y)s

]
and show that

Seff(B) = L1L2L3T
1

16π2

∫ ∞

0

ds

s3
e−m

2s

(
eBs

sinh eBs
− 1

)
.

Expand this in powers of B, finding the (divergent) wavefunc-
tion renormalization and the B4 piece of the Euler-Heisenberg
lagrangian.

f) Show that the corresponding result of a constant electric field can
be found by the substitution B → iE so that

Seff(E) = L1L2L3T
1

16π2

∫ ∞

0

ds

s3
e−m

2s

(
eEs

sin eEs
− 1

)
.

g) Demonstrate that, although Im Seff(B) = 0, one nonetheless ob-
tains

Im Seff(E) = L1L2L3T
e2E2

16π3

∞∑
n=1

(−)n

n2
e−nπm

2/eE ,

and discuss the meaning of this result [Sc 51].


