• Welcome to The Sun Group

    A human being is like a delicate machine. From engineers’ perspective, we are curious about how this machine is built and how to fix it when it goes awry. Specifically, we are interested in how mechanical information, encoded in nano-scale molecules, guides micro-scale cells to assemble into mili-scale functional tissues and organs. We also develop tools that interact with biomolecules, cells and tissues for a range of applications from diagnostics of diseases to regenerative medicine.

  • Mechanobiology of stem cells

    We are interested in the mechanical regulation of stem cell fate, i.e., how stem cells respond to the rigidity of extracellular matrix, external forces, nanotopographical cues, geometric constraints, etc. We develop micro/nanoscale micromechanical tools to control these mechanical cues and combine with molecular and cell biology approaches to understand the mechanobiology.

  • Modeling development and diseases using pluripotent stem cells

    Pluripotent stem cells are powerful tools to understand the development processes and the progression of many diseases. We design and fabricate unique bioengineering tools and biomaterials to unleash the potential of stem cells. For example, synthetic substrates strongly promote motor neuron differentiation of human pluripotent stem cells, which may be used to study and treat degenerative diseases like ALS.

  • Acoustic tweezing cytometry

    Acoustic tweezing cytometry (ATC) is a novel technology using ultrasound and lipid microbubbles to apply mechanical forces to cells through intergin-cytoskeleton network.

  • Integrated microengineering systems

    We make lab-on-a-chip type of devices to control cell microenviroment, apply mechanical and chemical stimulation, model the morphological and functional feature of tissues in vivo.

Employment

Spring/Fall 2020: we have an opening for a PhD student. If you are interested in our research, please contact Dr. Sun through email. Candidates with strong background in bioengineering and material sciences are desirable.

Recent publications

Xufeng Xue, Yubing Sun, et al., Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells, Nature Materials, vol. 17, 633, 2018.

Contact Us

Yubing Sun, Ph.D.

Department of Mechanical & Industrial Engineering
University of Massachusetts, Amherst
N571 LSL, Amherst, MA 01002

ybsun AT umass.edu

 

 

Latest News

Neuroengineering Seed Grants

Our lab received an IONs Neuroengineering Seed Grants in collaboration with Dr. ChangHui Pak. We thank the The Initiative on Neurosciences (IONs) at UMass for the support. [news]

Read more

Farewell dinner for Ningwei

The lab had a farewell dinner in the House of Teriyaki for Ningwei. Best wishes for her future career at Colgate!

Read more

Subi presented in the CoE REU poster session

Subi presented her summer research (sponsored by the NSF REU program) in the REU poster session hosted by the College of Engineering. Nice work!

Read more

EJ won the second place in the Innovation Challenge

E.J. Chen and his venture “Renovare” won second place in the final of the Innovation Challenge and received $21,000 equity free investment. His company seeks to accelerate the wound healing process by developing “massaging bandages”, leveraging the mechanosensitivity of epithelial cells. Congratulations! See the CoE news article here.

Read more