Gauge Theories and Topological Order
In this chapter: 2+1d systems, phase transition with no local order parameter.

2+1d Ising Model and Duality

\[H = -J \sum_{ij} \sigma_i^z \sigma_j^z - H \sum_\sigma \sigma^x \]

For \(H \ll J \): FM phase

 (almost) degenerate GS

Excitations:

- DW: Closed loops, not point-like objects anymore!
 - "String-like" excitations
 - Theory of such closed strings = binary version of electromagnetism.

DW Operator:
Let T's live on the links of the dual lattice (since DW naturally live on the dual lattice).

As in Id.:

\[\tau_{ij}^x = \sigma_i^x \sigma_j^x \]

counts DW between i and j.

However: N sites, $2N$ links \Rightarrow $2N$ T's!

we need N constraints.

\[\tau_1 \tau_{12} \tau_{13} \tau_{14} \tau_{15} = (\sigma_1^x \sigma_2^x) \sigma_3^x \sigma_4^x \sigma_5^x \sigma_7^x \sigma_9^x \sigma_8^x \sigma_6^x \sigma_5^x \sigma_8^x \sigma_7^x \sigma_9^x \sigma_1^x \sigma_2^x \sigma_3^x \sigma_4^x \sigma_5^x \sigma_6^x \]

\Rightarrow local constraint

We write:

\[\prod_{i=1}^{4} \tau_{i,i+1} = 1 \]

\[\forall \text{ sites of the dual lattice} \]

sets of 4 links that emerge from site i on dual lattice.

Spin Flip operator:

$\vec{\sigma}_i^x$ is a group operation that flips the value of DW operator T_i^x on all bonds surrounding the lattice site i.

$\Rightarrow \sigma_i^x$ creates loop of DW: flips the value of DW operator T_i^x on all bonds surrounding the lattice site i.

\[\sigma_i^x = \tau_{12} \tau_{13} \tau_{14} \tau_{15} = \prod \tau_i^x \]

\uparrow plaquette of the dual lattice
\[H = -J \sum_{\text{links}} \tau^x_{ij} - K \sum_{\text{loops} \in \mathcal{L}} \tau^z_{ij} \]

\[\tau^x \text{ live on links of square lattice} \]

\[\prod_{i} \tau^x = 1 \text{ for all } i \]

Gauge invariance: \(H \) invariant under local \(\mathbb{Z}_2 \) gauge transformation:

\[\tau^z_{ij} \rightarrow \epsilon_i \tau^z_{ij} \epsilon_j \text{ with } \epsilon_i = \pm 1 \in \mathbb{Z}_2 \]

Clearly, the 2+1d Ising model isn't self-dual! As in 1d, the mapping isn't 1 to 1 (no symmetry breaking and 65 degeneracy for the Gauge theory at small \(h \)).

\[\Rightarrow \] Constraints: \(V_i: \prod \tau^x = 1 \]

\[\text{commute: constant on 0 or 2 links, } (-1)^c = 1 \]

In the following we will forget about the Ising model, and treat the dual gauge theory as "fundamental."
H is invariant for any such local transformation. This is sometimes called "local symmetry," but this is really a Gauge redundancy of the theory. This transformation doesn't really change states like a spin flip symmetry in the Ising model.

\[G_i |\psi\rangle = |\psi\rangle \] states invariant under Gauge transformation

\[L \] generates Gauge transformation with \(E_i = -1 \)
\[E_{ij} = 1 \quad \forall j \neq i \]

\[G_i = \prod_{+i} r^{-x} \] (Plays the sign of all \(r^\tau \)'s emanating from \(i \))

\(= \) constraints ensures \(G_i = 1 \): keeps only physical states.

\(\mathbb{Z}_2 \) Electromagnetism:

\[r^z = e^{i\pi a_{id}} \quad a_{id} = 0,1 \]

\[\prod r^z = e^{i\pi \sum a_{id}} = e^{i\pi \theta} \] " Flux through plaquette

let \(r^x = e^{i\pi \theta} \) so \(H \sim (-1)^e + g(-1)^e \)

Constraints:

\[\prod r^{-x} = e^{i\pi \nabla \cdot e} = 1 \quad \Rightarrow \quad \nabla \cdot e = 0 \mod 2 \]

where \(\sum e_{id} = e_{\pi + \tilde{y}/2} + e_{\pi - \tilde{y}/2} + e_{\tilde{x} + \tilde{z}/2} + e_{\tilde{x} - \tilde{z}/2} \)

\(\nabla \cdot e \) can be flipped to \(0 \) since \(e \equiv -e \)

Electric Field = DW Forms closed loops
Phase diagram of the Ising Gauge Theory

- **Confined Phase**: \(g \ll 1 \): For \(g = 0 \),
 \[H = -J \sum_{ij} T_{ij}^x \]
 \[\Rightarrow T_{ij}^x = 1 \] on all links, satisfies constraint.
 This corresponds to \(e = 0 \) everywhere.

For \(g \) small, there will be some links with non-zero electric fields. To satisfy the constraints, the field lines have to form closed loops. For small \(g \), we expect these loops to be small and dilute. As we increase \(g \), these loops proliferate = condense.

- Confinement of test changes: electric lines are confined for \(g \ll 1 \). To see this, insert two “test changes” at sites \(i \) and \(i + \mathbf{p} \), and ask how much energy it costs to pull these changes apart.

Changes: \(T_{i} T_{ij}^x = -1 \) (odd number of \(T_{ij}^x = -1 \) emanate from this site and have to connect to the other test change)

Each \(T_{ij}^x = -1 \) links costs energy \(2J \): pick shortest path:

\[\Delta E(\mathbf{p}) = 2J \mathbf{p} \]

- In this phase, the electric field is well defined (\(\approx 0 \)) while the magnetic field fluctuates wildly.

- Remark: It’s important to perform this diagnosis in a pure gauge theory (without matter, additional changes)
Deconfined Phase: $g \gg 1, \quad H = -gJ \sum_{\Box_i} \tau_i^z \tau_j^z \tau_k^z \tau_l^z$

$\text{GS: } \prod_{\Box_i} \tau_i^z = +1 \quad \text{for all } \Box_i$

(Gapped) Excitation: Flip a given plaquette to $\prod_{\Box_i} \tau_i^z = -1$

energy cost: $\Delta = 2gJ$. To create such an excitation, we actually need to flip flips along a “string”

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & B_0 = -1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

B = $\prod_{\Box_i} \tau_i^z$

Apply τ^x on -1 links

This excitation comes with a string attached.

GS wavefunction: Let’s first work in the “$B = \tau^z$” basis.

Naively: $|\Psi_0^+\rangle = \bigotimes_{i,j} |\tau_i^z = +1\rangle$ But not Gauge invariant!

$G_i = \prod_{-\tau^x} \tau_i^z \quad \tau^z \rightarrow -\tau^z$

$\rightarrow |\Psi_0^+\rangle = \prod_i \left(1 + G_i \right) |\Psi_0^+\rangle$ now $G_i(\text{GS}) = G_i$

projection onto $G_i = +1$

and $H |\Psi_0^+\rangle = E_0 |\Psi_0^+\rangle$ since $[H, G_i] = 0$

$H |\Psi_0^-\rangle = E_0 |\Psi_0^-\rangle$
Deconfinement of test changes:

\[\text{insert two test changes } x_0, x_0 + p \]

\[|G_0 > = \left(1 - G \frac{x_0^2}{2} \right) \left(1 - G \frac{x_0^2 + p_0^2}{2} \right) \prod_{\delta} \left(1 + G_{\delta} \right) |\Psi_0 > \]

\[H (G_0) = E_0 |G_0 > \Rightarrow \Delta E(p) = 0 \quad \text{in this limit!} \]

Charges are deconfined (\(\Delta E(p) \rightarrow \infty \))

In \(E = \tau^x \) basis:

\[|r^z = +1 > = \frac{|r^x = +1 > + |r^x = -1 >}{2} \]

\[= \cos \frac{1}{e = +1} + \sin \frac{1}{e = 0} \]

\[\prod_{\delta} \tau^z |G_0 > = |G_0 > \quad \text{as } \prod \tau^z \text{ creates a loop } \]

- deconfined phase: strings are "cheap" and fluctuating.

\[\text{Topological Order} \]

Let's consider the deconfined phase.

Excitation = gapped magnetic flux excitation = "vison"

Carries \(\mathbb{Z}_2 \) flux of -1 = \(\pi - \text{flux} \)

As explained above, these excitations come with a string.
Acting with T^x along the string (red links) creates two visions ($-1 \mathbb{Z}_2$ fluxes).

The string is not measurable by any local measurement; all the plaquettes along the string have no fluxes, $B_0 = +1$.

Topological GS degeneracy: $K = \#$ non contractible paths

\[
\begin{array}{c}
K = 2 \\
K = 1 \\
K = 1
\end{array}
\]

GS degeneracy $= 2^K$

Proof: Consider a cylinder and $g = \infty$ limit (for now).

$X = \prod T^x_e$: creates visions at $\pm \infty$.

$Z = \prod p^z_e$: takes electric charge around the cylinder.

gauge invariant operators
Take a ground state \(|GS\rangle \). Then \(X|GS\rangle \) also \(GS \) since all plaquettes have 0 \(Z_2 \) fluxes through them. \([H, X] = 0 \) also \([H, Z] = 0 \).

But \(\{Z, X\} = 0 \) (share one link, and \(T_x, T^3 = 0 \)) which should be represented on the GS:

\[
|GS\rangle = X|GS\rangle \\
Z|GS\rangle = ZX|GS\rangle = -XZ|GS\rangle = -X|GS\rangle
\]

- gauge invariant = physical

\[
\text{two-fold degeneracy!}
\]

\[
Z|GS\rangle = Z|GS\rangle \quad \Rightarrow \quad Z \text{ measure, the } Z_2 \pi \text{ flux created by } X \text{ in } |GS\rangle
\]

More formally, since \(H \) commutes with \(Z \) and \(X \), the anti-commutation \(\{Z, X\} \) should be represented on the GS

\[
Z^2 = X^2 = 1 \quad \Rightarrow \quad \text{implies degeneracy}
\]

Note: Precise contours do not matter. \(C \) can be deformed by acting by \(G_i \).

\[
8<\infty: \quad [H, X] = 0 \quad \text{But} \quad [H, Z] \neq 0 \text{ now.}
\]

\[
\begin{align*}
\text{treated as } -J \sum T_x \text{ using perturbation theory.}
\end{align*}
\]

|GS\rangle \text{ and } X|GS\rangle \text{ now related by matrix element}

\[
H_{eff} = \begin{pmatrix} E_0 & \Gamma \\ \Gamma & -E_0 \end{pmatrix}, \text{ actual ground states are superpositions of}
\]

|GS\rangle \text{ and } X|GS\rangle

\[
\Gamma \approx J \left(\frac{J}{2J} \right)^L \\
\text{undo string of flipped}
\]

\[
\tau^3 = -1.
\]

\[
\text{at any step, unhappy plaquette energy cost: } 2J g \text{ (large)}
\]
No local operator can tell the difference between $|GS\rangle$ and $|IGS\rangle$. The flux can only be measured by taking an electric change all around the cylinder.

IV. Tonic Code

In the \mathbb{Z}_2 gauge theory, the physical objects are electric loops (strings), and the Hilbert space doesn't really have a tensor product structure because of the gauge constraint. Can we have this structure emerge in a physical spin model?

\implies implement constraint "dynamically" (high energy cost for violating it)

$$H_{Tc} = - J_m \sum_0 B_0 - J_e \sum A_+ \tag{Kitaev}$$

with $B_0 = \prod_{i \in 0} \tau_i^z$, $A_+ = \prod_{i \in +} \tau_i^x$

D = plaquette = P

$+ =$ star term = S

no constraint in this model

(But $J_e \to 0$ enforces previous gauge constraint)

Exact solution: sum of commuting terms:

$$[A_5, B_p] = 0$$
$$[A_5, A_{5'}] = 0$$
$$[B_p, B_{p'}] = 0$$

$\forall s, s', p, p'$

GS: $A_5 = +1$, $B_p = +1$ ($A_5 = +1$ emerges dynamically!)
\[B_p = -1 : \text{vortex (magnetic) excitation} \]

\[B_p |GS\rangle = +1 |GS\rangle \quad \forall p \Rightarrow |GS\rangle = \sum_{p=1}^{\infty} c_{p=1} \epsilon^{p} |p\rangle \text{ s.t. } \prod_{i=0}^{\infty} \tau_{i}^{t_{i}+1} \text{ i.e. } (\text{no flux}) \]

\[\Rightarrow |GS\rangle = \text{superposition of vortex-free configurations} \]

Now think of \(\tau_{t_{i}+1} \) as links.

\[A_{5} |GS\rangle = |GS\rangle \quad \forall s \]

On infinite plane, \(C_{p=1} = +1 \) up to normalization (as the \(A_{5} \) generate any configuration from \(|\tau_{t_{i}+1}\rangle \)).

On Torus:

\[W(\tau_{t_{i}+1}) = \prod_{i \in \epsilon} \tau_{i}^{t_{i}_{+1}} \text{ ("Wilson" loops)} \]

Any \(A_{5} \) will intersect 0 or 2 edges of these loops. Hence cannot connect states with different values of \(\omega_{\epsilon_{1}}, \omega_{\epsilon_{2}} \).

\[\Rightarrow 4 \text{ degenerate GS: } (\omega_{\epsilon_{1}}, \omega_{\epsilon_{2}}) = (\pm 1, \pm 1) \]

Excitations: two flavours: electric changes and magnetic vortices.

A team \quad B team
Electric path operator:

\[W^{e_{i}}_{s_{i},s_{2}} = \prod_{i \in E_{s_{i},s_{2}}} \tau_{i} \]

Connects 2 stars

Clearly \([W^{e_{i}} B_{p}] = 0\) for all \(A_{s}^{e} \), except \(A_{s_{1}}, A_{s_{2}}\) (share only 1 link)

\(\langle \psi_{s_{1},s_{2}} \rangle = W^{e_{i}}_{s_{1},s_{2}} |G_{S}\rangle\)

Eigenstate with energy \(4J_{e}\)

\(\psi_{s_{1},s_{2}}\) is an eigenstate with energy \(4J_{e}\).

\(\psi_{s_{1},s_{2}}\) is an eigenstate with energy \(4J_{e}\).

Magnetic path operator:

\[W^{m}_{\mathbb{P}_{i}} = \prod_{i \in \mathbb{E}_{\mathbb{P}_{i}}} \tau_{i}^{x} \]

Connects two plaquettes, \(\mathbb{E} = \mathbb{P}_{i}\) on dual lattice

Commutes with all \(A_{s}^{e}\), and almost all \(B_{p_{i}}^{e}\), almost all \(B_{p_{i}}^{e}\)

\(\langle \psi_{\mathbb{P}_{i},\mathbb{P}_{j}}^{m} \rangle = W^{m}_{\mathbb{P}_{i}} |G_{S}\rangle\)

Energy = \(4J_{m}\)

\(\psi_{\mathbb{P}_{i},\mathbb{P}_{j}}^{m}\) is an eigenstate with energy \(4J_{m}\).

\(\mathbb{P}_{i}\) is an eigenstate with energy \(4J_{m}\).

\(\mathbb{P}_{i}\) is an eigenstate with energy \(4J_{m}\).

Note: There's no phase transition in \(H_{Te}\)

(Commuting projector Hamiltonian)
Anyonic Statistics and Emergent Fermions:

Exchange identical particles, focus on statistical phase:

\[\begin{align*}
& a \leftrightarrow b = R_{ab} & \text{indistinguishable particles: } a = b \\
& \text{Do this twice:} \\
& \begin{array}{c}
\text{a} \\
\circ \\
\text{b}
\end{array} \\
\end{align*} \]

in 3d: Full notation two exchanges do nothing \(\Rightarrow \) identity.

in 3d \(\rightarrow \) exchange can lead to \(\pm 1 \) eigenvalues (neutrinos in bosons) in 2d: Braid group more complicated \(\rightarrow \) Anyons.

Toric code: Clearly, \(e \) and \(m \) are bosons since path operators of the same path commute with each other.

We write:

\[\begin{align*}
& \begin{array}{c}
\text{e} \\
\circ \\
\text{e} \\
\circ \\
\text{e}
\end{array} = \\
& \begin{array}{c}
\text{e} \\
\circ \\
\text{e} \\
\circ \\
\text{e}
\end{array} \\
& \begin{array}{c}
\text{m} \\
\circ \\
\text{m} \\
\circ \\
\text{m}
\end{array} = \\
& \begin{array}{c}
\text{m} \\
\circ \\
\text{m} \\
\circ \\
\text{m}
\end{array} \\
\end{align*} \]

However, they have some non-trivial mutual statistics:

\[\begin{align*}
& \begin{array}{c}
\text{e} \\
\circ \\
\text{m}
\end{array} = \\
& \begin{array}{c}
\text{m} \\
\circ \\
\text{e}
\end{array} \\
\end{align*} \]

Mutual statistics of \(\pi \).
To see this, let's consider $|p_i>$, a state with magnetic vortex at p_i.

"Braiding operation": Take e charge around m:

$$|p_i> \rightarrow \prod_{i \in \mathcal{E}} \tau_{i}^{z} |p_i>$$

\mathcal{E} contour surrounding p_i.

Now:

$$\prod_{i \in \mathcal{E}} \tau_{i}^{z} = \prod_{\text{inside } \mathcal{E}} B_p$$

("Stokes' Theorem!")

$$\oint_{\mathcal{E}} \mathbf{w} = \int_{\Omega} \mathbf{dw}$$

and $B_p |p_i> = -|p_i>$.

So $|p_i> \rightarrow -|p_i>$ under this braiding operation.

$\prod_{i} \tau_{i}^{z}$ isn't trivial if \mathcal{E} encloses a magnetic vortex!

τ_{i}^{z} is a fermion.

This means that $E = e \times m$ is a **Beamsion**:

τ_{i} composite particle
The GS degeneracy can also be understood in terms of this non-trivial mutual statistics.

Note: create ee pair and wrap up of all of them around a cycle of the towns to annihilate them again, and same thing for mm around the other cycle: those operations anticommute.

VI. \(\mathbb{Z}_2 \) Gauge theory with “manner fields”

\(\tau_{ij} \): gauge “fields”, live on links

\(\sigma_i \): Ising matter fields, live on sites. (vertex)

\[
H = -g \sum_{\langle ij \rangle} \tau_{ij}^x - g^{-1} \sum_0 \tau_{ij}^z \tau_{jk}^z \tau_{kl}^z - \lambda \sum_i \sigma_i^x - \lambda \sum_i \sigma_i^z \tau_{ij}^x \sigma_j^z
\]

Gauge symmetry: \(\sigma_i^x \prod_{\partial \ell_i} \tau_{ij}^x = \prod_{\partial \ell_i} \tau_{ij}^x = \sigma_i^x \) for \(g \in \ell_i \) since \(A_i = \sigma_i^x \)

(\(\nabla \cdot e = p \))

\(\sigma = \mathbb{Z}_2 \) electric charge

\[
\begin{align*}
\text{if } & g \rightarrow 0, \quad H = -g^{-1} \sum_0 B_0 - \lambda \sum_+ A_+ \quad \text{since } A_+ = \sigma_i^x \\
\lambda \rightarrow 0 \quad & = H_{\text{Tr}}
\end{align*}
\]
\(g = 0, \lambda \neq 0: \) pure matter theory

\[B_0 = +1, \forall \Box \]

(no flux condition)

Under gauge fixing: \(\tau_{ij}^2 = +1 \) on all links

\[H_{G.F.} = -\lambda^{-1} \sum_i \sigma_i^x - \lambda \sum_{ij} \sigma_i^z \sigma_j^z \]

has a symmetry breaking transition as a function of \(\lambda \). \(\lambda \) large: Higgs phase

\(\Rightarrow \) conventional symmetry breaking transition upon gauge fixing.

\(\lambda \) give dynamics to e changes. At the Higgs transition, e particles condense (\(\sigma \) gets expectation value)

leads to confinement of m (general Topological QFT result)

\(e, m \) have non trivial mutual statistics

\(\lambda = 0, g \neq 0: \) pure gauge theory

electric changes now cost \(\alpha \) energy \(\Rightarrow \) constraint \(\prod \tau_x = +1 \) on each star +

\[H = H_{Z_2 \text{ gauge theory}}. \]

As \(g \) increases: confinement of e particles

m particles condense

Diagram:

- Pure-Matter Theory
- Deconfined Phase
- \(Z_2 \) Top. Order
- Pure gauge Theory

Diagrame Notes:
- Higgs
- Change condensate
- Vortices confined
- \(\text{Deconfined Phase} \)
- Vortex Condensate
- \(\text{Charge} \) changes confined

\[g = 0, \lambda \neq 0: \text{pure matter theory} \]

\[B_0 = +1, \forall \Box \] (no flux condition)
Higgs Phase and "Spontaneous Gauge Symmetry Breaking"

- **Xiao-Gang Wen** argument: gauge "symmetries" aren't actual symmetries, "do nothing" transformation. Two states related by gauge transformation are actually the same state. Can't be spontaneously broken.

- **Elitzur's theorem**: Gauge symmetries can't be spontaneously broken.

Intuitively: In a 2d classical Ising model, going from all \uparrow to all \downarrow

requires a domain wall with extensive energy cost. In 1d: no extensive energy cost, entropy wins \Rightarrow no FM phase in classical 1d Ising model

\Rightarrow same argument breaks down for local gauge symmetries: different GS would be connected by local gauge transformations at no energy cost!

So what's going on in the Higgs phase?

\[H = -\lambda^{-1} \sum_i \sigma_i^x - \lambda \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z \]

with $B_{ij} = r^2 r^2 r^2 r^2 = +1$ (Focus on $g \to 0$)

Gauge fixing: $T^z_\mu = 1$, then looks like spontaneous symmetry breaking?

Solution: $T^z_\mu = \sigma^z_\mu$ as $\lambda \to \infty$, $g \to 0$ (satisfies $B_{ij} = +1$, 4D)

The true eigenstates of H can be obtained from:

\[H_{\text{g-fixed}} = -\lambda^{-1} \sum_i \sigma_i^x - \lambda \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z \]

\[^{\text{gauge fixed Hamiltonian}}\]
By symmetrizing to make them gauge invariant:

\[|y_n\rangle = \sum_G G |y_n\rangle \quad G = \text{gauge transformations} \]

In particular, the two ferromagnetic groundstates of \(H_{\text{g.b.}} \):

\[|\sigma^z=+1, \tau^z=+1\rangle \quad \text{and} \quad |\sigma^z=-1, \tau^z=+1\rangle \]

are related by gauge transformations.

\[\Rightarrow \] the Higgs mechanism looks like SSB for a particular choice of gauge, but the true GS is unique and gauge-invariant.

\[\Rightarrow \] the Higgs mechanism looks like SSB for a particular choice of gauge, but the true GS is unique and gauge-invariant.

\[\Rightarrow \] the Higgs mechanism looks like SSB for a particular choice of gauge, but the true GS is unique and gauge-invariant.

VII Detecting Topological Order using Entanglement

How can one detect deconfinement experimentally or even numerically?

- degeneracy on torus with no broken symmetry/order
- Braiding properties of anyonic excitations.

Say we have the wavefunction \(|\psi\rangle \) that is the GS of a topologically ordered \(H \). No torus, no excitation: How do we tell that it is topologically non-trivial?

\[\Rightarrow \text{Entanglement Entropy} \]

\[S_A = - \sum_{\rho_A} \rho_A \log \rho_A \quad \rho_A = \text{tr}_A \rho \quad \text{with} \quad \rho = |\psi\rangle \langle \psi| \]

\[\rho_A = |\psi\rangle \langle \psi| \]

\[\text{reduced density matrix} \]

Example: two qubits:

\[|\psi\rangle = |\uparrow\rangle \quad \Rightarrow \quad \rho = |\uparrow\rangle \langle \uparrow| \]

\[\rho_A = |\uparrow\rangle \langle \uparrow| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \]

\[S_A = 0 \quad \text{not entangled product state} \]
\[|\psi\rangle = \frac{|1\rangle + |1\rangle}{\sqrt{2}} \Rightarrow p = \frac{1}{2} (|1\rangle \langle 1| + |1\rangle \langle 1| + |1\rangle \langle 1| + |1\rangle \langle 1|) \]

\[p_A = \frac{1}{2} (|1\rangle \langle 1| + |1\rangle \langle 1|) = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \]

Mixed state!

\[S_A = - \sum_i p_i \log p_i = \log 2 \text{ with } \sum_i p_i = 1 \]

Properties:
- For a pure state: \(S_A = S_B \)
- Strong subadditivity:
 \[S_A + S_B \geq S_{A\cup B} + S_{A\cap B} \]

Many-body system:
- \(S_A \leq N_A \log 2 \)
- \(N_A \sim L_A^d \) spins \(\frac{1}{2} \) in 2d. “volume law”
- Gapped ground states:
 \(S_A \sim L_A \) area law
- CFT in 1+1d:
 \(S_A = \frac{c}{3} \log L_A \) violates (mildly) area law
- Low entanglement in quantum GS:
 Tensor networks and matrix product state techniques. DMRG etc.

Entanglement in Tonic code:
- \(S_A \sim \alpha L_A - \gamma \) \(\alpha \) universal, = \(\log 2 \) \(\gamma = \log 2 \) \(\mathbb{Z}_2 \) top. order

\[|\psi\rangle = \sum_{\text{electric loops}} |\text{loop}\rangle \]

\(A \): compact simply connected.

Eigenvalues of \(p_A \) can be labelled by electric \((\tau^x)\) configurations at the boundary.

Loops that do not cross the boundary do not contribute to \(S_A \)
Naively 2^{LA} possibilities for $T^X = 1$ at boundary, all equiprobable in $|4\rangle$.

However: Non local constraint from (emergent) Gauss law: number of electric line crossing boundary is Even.

$= N = 2^{LA-1}$ possible configurations (last e line fixed) Gauss law gives us “one bit” of information.

$p_i = \frac{1}{N}$

$S_A = -\sum_{i=1}^{N} p_i \log p_i = \log N = LA \log 2 - \log 2$

This is a universal property of Z_2 topologically ordered states.

\[\text{VII U(1) Gauge Theories (Very Brief)} \]

Example of lattice $U(1)$ gauge theory in 2+1d:

Compact QED

Consider: 2+1d system, notation $\Psi = \varphi + 2\pi$ defined on links

$[\Psi_p, n_p] = i \delta_{p,p'}$ $n_p =$ conjugate variable = integer

$0 \in [\varphi, 2\pi)$, n = “angular momentum” if $\varphi =$ coordinate of particle on a ring

$e^{-i\hat{\varphi}} e^{i\hat{n}} = \hat{n} + m$
Gauss law: \(\nabla \cdot \mathbf{E} = 0 \)

Gauge invariant: \([H, G_5] = 0 \)
\[
H = \alpha \sum_p n_p \quad \text{wouldn't have a bounded spectrum from below}
\]
\[
\rightarrow \frac{1}{2} kE \sum_p n_p^2 : \text{leading electric term}
\]

Since \(\Theta \) is angle, consider operator \(e^{i \theta_p} \rightarrow \) not gauge invariant
\[
e^{i \left(\Theta_{12} - \Theta_{23} + \Theta_{34} - \Theta_{14} \right)}
\]
\[
\rightarrow \text{gauge invariant object}
\]

To get rid of these signs, let's orient the lattice

\[
\begin{align*}
e_{ij} &= \varepsilon_i \varepsilon_j \\
a_{ij} &= \varepsilon_i \Theta_{ij}
\end{align*}
\]

Gauge constraint: \(\nabla \cdot \mathbf{E} = 0 \) (Gauss law)

\(\mathbb{Z}/2 \rightarrow \text{charges would be quantized} \)

For Compact QED

Gauge group: \(U(1) \)

Gauge invariant object: \(e^{i (\nabla \cdot a) \cdot \vec{n}} \) Magnetic flux

\[
L = a_{12} + a_{13} + a_{34} + a_{14}
\]
\[
H = \frac{K_E}{2} \sum_{\text{\(e\)}} e_p^2 - K_B \sum_{\text{\(e\)}} \cos \theta_0
\]

- \(K_E \gg K_B\): \(e_p \approx 0\) electric lines costly, confined phase satisfies constraint
- \(K_B \gg K_E\): favors \(\theta_0\) small (mod 2\(\pi\))
 \[\cos \theta_0 \approx 1 - \theta_0^2/2\]
 \[H \approx \frac{K_E}{2} \sum_{\text{\(e\)}} e_p^2 + \frac{K_B}{2} \sum_{\text{\(e\)}} \theta_0^2 + \ldots \sim \text{Usual QED} \text{ gapless photons}\]

Similar construction in any dimension.

BUT: in 2+1d, funneling between minima of \(\cos \theta_0\) crucial!
(Polyakov) \(\rightarrow\) confined phase only, \(\text{monopoles (Compact QED)}\)
\(\rightarrow\) photon gets a mass