Inducing phonetic categories and phonological grammars

Joe Pater,
University of Amherst, Massachusetts

Cornell Workshop on Grammar Induction
May 16th, 2010
These comments were prepared in response to:

A single stage approach to learning phonological categories: Insights from Inuktitut

Brian Dillon, Ewan Dunbar, and William Idsardi

Ms, University of Maryland

and hopefully also serve as a suitable commentary on William Idsardi's Model-based Learning of Vowel Categories
Dillon et al.'s work builds an important bridge between two heretofore distinct research traditions:

1. Statistical modeling of phonetic category learning

2. Structuralist-generative analysis of phonological systems

Their proposal is a clever synthesis of the two, which results in a novel theory of the relation between phonetics and phonology.
From the MOG statistical models:

 The symbolic phoneme is replaced by a probability distribution over phonetic values.

The innovation:

 The phonological rule is replaced by a numerical transform of phonetic values.

As in exemplar-based models, there is no phonetics-phonology interface (see Kirchner and Moore 2009: ROA on phonological generalization in an exemplarist model)
Two challenges (recognized by Dillon et al.)

1. There is not yet a learning theory for the “rule component”

The single-stage transform from basic to context-specific values yields the effect of opaque counter-bleeding and counter-feeding rule ordering (in the manner of simultaneous application theories).

2. Languages analyzed with transparent orderings predicted to be impossible (though see Kaye on Dialect B!)
A basic assumption in Dillon et al.'s discussion:

Phonological generalizations require phonemes; they are done in terms of mappings from basic categories to context-specific variants

The alternative:

Phonological generalizations stated over “surface-level phones”, as in:

- n-gram models of phonotactics
- Finite-State models of phonotactics
- constraint-based models of phonology
In the time remaining, I will:

1. Sketch an approach to constraint induction that I'll call *constraint projection*

2. Discuss an issue that category learning raises for this framework

Constraint projection (see Moreton handout for precedents, Albright slides for related work):

- Constraints projected from individual pieces of learning data; generalization across data encoded in constraint weights
Constraints on surface representations:

Datum [bi]

\[\text{LABIAL} \leftrightarrow \text{VOICE} \]

Assign a reward of +1 to a voiced labial

\[\text{LABIAL} \rightarrow \text{VOICE} \]

Assign a penalty of –1 to a voiceless labial

NB Canadian raising analyzed with language-specific constraints in BP (2007)
Constraints on underlying representations:

Datum [bi] “bee”

“bee” → /bi/

Assign a reward of +1 to the UR /bet/ for meaning “bee”

or

Assign a penalty of –1 if meaning “bee” does not map to UR /bi/

A challenge inspired by Dillon et al.:

If constraints are projected from individual pieces of learning data, how do learners come to generalize to appropriate language-specific categories?

For example:

English learners exposed to word-initial “voiced” labial stops with a range of VOT values create a single category (“[b]”) that includes tokens that would be in separate [b] and [p] categories in other languages.
The constraints:

[p] Assign +1 to a word-initial voiceless unaspirated labial stop

[b] Assign +1 to a word-initial voiced unaspirated labial stop

Faith

Assign +1 if perceived voicing is represented accurately

“x” → [p], “x” → [b]

Assign +1 if meaning “x” maps to a phonological word with word-initial [p]/[b]
The problem (perception à la Boersma; see also Pater 2004, Pater, Stager and Werker 2004):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>{bi}</td>
<td>“bee”</td>
<td>☞ [bi]</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>{bi}</td>
<td>“bee”</td>
<td>[pi]</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>{pi}</td>
<td>“bee”</td>
<td>[bi]</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>{pi}</td>
<td>“bee”</td>
<td>☞ [pi]</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

If constraints are simply given equal weight, the language has a too rich category structure.

The solution: a bias for low faithfulness
Simulation results
Initial Faith = \(\exp(-3) = 0.05\); Others = \(\exp(1) = 2.72\)
Learning rate = 0.01; Noise.SD = 0.2; 10,000 iterations

Learning data:
{bi}, “bee”
{pi}, “bee”

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>{bi}</td>
<td>“bee”</td>
<td>☞ [bi]</td>
<td>8.42</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>{bi}</td>
<td>“bee”</td>
<td>[pi]</td>
<td>3.83</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>{pi}</td>
<td>“bee”</td>
<td>☞ [bi]</td>
<td>7.71</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>{pi}</td>
<td>“bee”</td>
<td>[pi]</td>
<td>4.54</td>
<td></td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

One meaning, one category

http://people.umass.edu/pater/perceptron.R
Data: “bee” {bi} “hat” {pi}

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>{bi}</td>
<td>“bee”</td>
<td>☞ [bi]</td>
<td>11.87</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>{bi}</td>
<td>“bee”</td>
<td>[pi]</td>
<td>4.5</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>{bi}</td>
<td>“hat”</td>
<td>[bi]</td>
<td>9.44</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>{bi}</td>
<td>“hat”</td>
<td>[pi]</td>
<td>7.01</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>{pi}</td>
<td>“hat”</td>
<td>[bi]</td>
<td>4.44</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>{pi}</td>
<td>“hat”</td>
<td>☞ [pi]</td>
<td>12.01</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>{pi}</td>
<td>“bee”</td>
<td>[bi]</td>
<td>6.87</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>{pi}</td>
<td>“bee”</td>
<td>[pi]</td>
<td>9.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Two meanings, two categories
For empirical evidence that category-learning infants are doing sound-object association, see Yeung and Werker (2009: Cognition); on joint inference of words and categories, see Feldman, Griffiths and Morgan (2009: CogSci).
In sum

Dillon et al. make an important contribution in bringing together statistical inference of hidden category structure and structuralist-generative approaches to contextual conditioning.

It seems interesting to also explore approaches that do not assume phonemic abstraction across contexts; these still need to deal with the hidden structure problem of category learning, on which I hope to have taken some baby steps here.
Thanks to Brian Dillon and the participants in Ling 751, Spring 2010 (esp. Karen Jesney, Kevin Mullin, and Robert Staubs) for discussion.

Funded by NSF grant BCS-0813829 to the University of Massachusetts, Amherst.