Math 132 Final Exam Spring 2015

Name: ________________________________

ID Number: __________________________

Section Number: ______________________

Section Day/Time Instructor Section Day/Time Instructor
1 MWF 10:10 Farelli 9 TuThu 1:00 Benincasa
2 MWF 9:05 Farelli 10 TuThu 2:30 Benincasa
3 MWF 11:15 Clark 11 MWF 10:10 Buskin
4 MWF 12:20 Clark 12 MWF 12:20 Yaping
5 MW 2:30 Brown 13 MWF 1:25 Yaping
6 MW 4:00 Brown 15 TuThu 11:30 Buckman
7 TuThu 8:30 Duanmu 16 TuThu 1:00 Wen
8 TuThu 10:00 Oloo 17 TuThu 2:30 Wen

• No calculators, papers, or notes may be used.

• Please don’t just give an answer. Clearly explain how you get it, providing appropriate mathematical details.

• This is a 2 hour exam.

<table>
<thead>
<tr>
<th>Question</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC Total</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total (out of 100)</td>
<td></td>
</tr>
</tbody>
</table>

1
Multiple Choice Section: Choose the one option that best answers the question. There is no partial credit for questions 1-5.

1. [5 points] Find the Cartesian coordinate of the polar coordinate \((r, \theta) = (\sqrt{2}, 5\pi/4)\).

 (a) \((1, 1)\)

 (b) \((-1, -1)\)

 (c) \((1, -1)\)

 (d) \((-1, 1)\)

2. [5 points] Which is not a possible result for a power series?

 \[
 \sum_{n=0}^{\infty} c_n (x - a)^n
 \]

 (a) the series converges if \(x = a\)

 (b) the series converges for all \(x\)

 (c) the series converges when \(|x - a| < R\)

 (d) the series converges when \(|x - a| > R\)
3. [5 points] Find the interval of convergence of the power series:

\[\sum_{n=1}^{\infty} n! (3x - 1)^n \]

(a) \(I = \{0\} \)

(b) \(I = (-\frac{1}{3}, \frac{1}{3}] \)

(c) \(I = \emptyset \)

(d) \(I = \left\{ \frac{1}{3} \right\} \)

4. [5 points] Eliminate the parameter to find the Cartesian equation for \(x = 5 \sin(t), y = 2 \cos(t) \).

(a) \(\frac{x^2}{4} + \frac{y^2}{25} = 1 \)

(b) \(\frac{x^2}{25} + \frac{y^2}{4} = 1 \)

(c) \(x^2 + y^2 = 1 \)

(d) \(x^2 + y^2 = 10 \)

5. [5 points] Convert the polar equation \(3r \cos(\theta) + 4r \sin(\theta) = 1 \) into a Cartesian equation.

(a) \(3x + 4y = x^2 + y^2 \)

(b) \(\frac{x}{3} + \frac{y}{4} = 1 \)

(c) \(3x + 4y = 1 \)

(d) \(3y + 4x = 1 \)

Please fill in your letter answer for questions 1-5 below:

(1) _______ (2) _______ (3) _______ (4) _______ (5) _______
Free Response Portion: Show all work for each of the following questions. Partial credit may be awarded for questions 6-9. You will receive no credit for an answer without supporting work.

6. (a) [5 points] Evaluate the integral.

\[\int x^2 \sin(x^3) \, dx \]

\[-\frac{1}{3} \cos(x^3) + C \]
(b) [5 points] The Maclaurin series of \(\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n + 1)!} \).

Determine the Maclaurin series for

\[
f(x) = 2x^3 \sin(2\pi x^2) \]

Simplify completely by combining all terms within the summation.

\[
\sum_{n=0}^{\infty} (-1)^n \frac{2^{2n+2} \pi^{2n+1} x^{4n+5}}{(2n + 1)!} \]
7. (a) [10 points] Find the interval of convergence of the series. Justify any test you use, and be sure to verify any necessary conditions.

\[\sum_{n=0}^{\infty} (-1)^n \frac{(5x - 3)^n}{3n + 2} \]

\[I = \left(\frac{2}{5}, \frac{4}{5} \right] \]
(b) [10 points] Represent the following function as a power series. Simplify completely by combining all terms within the summation.

\[
f(x) = \frac{x^6}{(1 - 4x)^2}
\]

\[
\sum_{n=0}^{\infty} 4^n (n + 1) x^{n+6}
\]
8. Consider the curve given by the parametric equations

\[x = e^{\sin(t)} \quad y = \cos(t) + t - \pi \]

\[0 \leq t \leq 2\pi \]

(a) [10 points] Find the equation of the tangent line to the curve at the point \((1, -1)\).

\[y = -x \]

(b) [10 points] Find all the points where there is a vertical tangent line on the interval \(0 \leq t \leq 2\pi\).

\[(e, -\frac{\pi}{2}), \left(\frac{1}{e}, \frac{\pi}{2}\right) \]
9. (a) [10 points] Find the area enclosed in all loops of the function \(r = \cos(2\theta) \) given the graph of the function below. Mathematically justify how you find the integral bounds.

\[
A = \frac{\pi}{2}
\]
(b) [10 points] Find the slope of the tangent line for the function in part (a) \(r = \cos(2\theta) \) at \(\theta = \pi/4 \).

\[m = 1 \]

(c) [5 points] Find the exact length of the curve \(r = e^{3\theta} \) from \(\theta = 0 \) to \(\theta = 2 \).

\[\frac{\sqrt{10}}{3} (e^6 - 1) \]