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0. Abstract 
Behavioural findings indicate that English, Mandarin, and Korean speakers exhibit gradient 
sonority sequencing preferences among unattested initial clusters (Davidson 2006; Berent et 
al. 2007, 2008; Daland et al. 2011; Ren et al. 2010). While some have argued these results 
support an innate principle, recent modelling studies have questioned this conclusion, 
showing that computational models capable of inducing generalisations using abstract 
phonological features can detect these preferences from lexical statistics in these languages 
(Daland et al. 2011, Hayes 2011). This paper presents a computational analysis of the 
development of initial clusters in Polish, which arguably presents a stronger test of these 
models. We show that 1) the statistics of Polish contradict the Sonority Sequencing Principle 
(SSP), favouring sonority plateaus, 2) models that succeeded in the other languages do not 
predict SSP preferences for Polish, and 3) children nonetheless exhibit sensitivity to the SSP, 
favouring onset clusters with larger sonority rises.  

1. Introduction 

The Sonority Sequencing Principle (Sievers 1881; Jespersen 1904; Steriade 1982; Selkirk 
1984; Clements 1990) is a scale characterising cross-linguistic syllable well-formedness. The 
SSP favours syllables whose onsets rise in sonority toward the nucleus and fall in sonority 
from nucleus to coda. The SSP (1) prefers greater sonority rises for complex onsets, 
favouring large rises [bl] over plateaus [bd], which are in turn preferred to sonority falls [lb]. 
 
(1) Sonority Sequencing Principle (SSP)  

[jb]ack ≺ [lb]ack ≺ [nb]ack ≺ [bd]ack ≺ [bn]ack ≺ [bl]ack ≺ [bj]ack  
 

Recent studies employing a variety of behavioural tasks across multiple languages have 
consistently found that the SSP is active in speakers’ grammars (Berent 2008; Berent et al. 
2009, 2007, 2008; Zhao & Berent 2015; Lennertz & Berent 2015; Tamási & Berent 2014; 
Berent et al. 2012, 2011; Daland et al. 2011; Ren et al. 2010; Davidson 2006). Because the 
effects of SSP are found for novel clusters that are unobserved in the speakers’ language 
input, these effects have been termed sonority projection (see also Hayes 2011). In English, 
besides initial clusters beginning with [s] (e.g. [st], [sk], [sn], [sm]), only clusters with large 
sonority rises are permitted (e.g. [pl], [ɡw, [ʃɹ]). For English, sonority projection effects have 
been demonstrated with both adults and children in various tasks including production, 
perception, and non-word acceptability. For example, Berent et al. (2007) shows that English 
speakers are more likely to perceptually repair severe SSP violators like [lb]if than 
moderately violating forms like [bd]if, which in turn are repaired more often than mildly 
violating forms like [bn]if. This occurs despite the fact that English speakers have no direct 
experience with word-initial [lb], [bd], or [bn]. Sonority projection is also observed in Korean 
and Mandarin, which have a more restricted inventory of initial clusters than English. Both 
languages lack syllable initial clusters entirely except for obstruent-glide-vowel sequences 
which are sometimes analysed as combinations of simple onsets and complex nuclei (though 
see Lee 1994; Duanmu 2002). 

That the SSP is active in speakers’ grammars is largely uncontroversial. What remains 
actively debated, however, is the source of this knowledge. How do phonotactic 
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generalisations like the SSP come to be part of speakers’ grammars? Must the SSP be 
provided to the learner as a universal principle or phonetic bias or could speakers induce 
generalisations about the SSP from their language input? On the one hand there are 
proponents of a strong universalist interpretation of these results (Berent 2008; Berent et al. 
2009, 2007, 2008; Zhao & Berent 2015; Lennertz & Berent 2015; Tamási & Berent 2014; 
Berent et al. 2012, 2011; Ren et al. 2010). Others, however, question the need to invoke 
universal principles or phonetic biases to explain these effects, arguing instead that they are 
predictable from the input, given the right kinds of computational models (Hayes 2011; 
Daland et al. 2011). 

There is abundant evidence that speakers’ knowledge and learning of phonology and 
phonotactics is sensitive to the statistical properties of the language input. A substantial body 
of research indicates that gradient phonotactic acceptability (Coleman & Pierrehumbert 1997; 
Vitevitch et al. 1997; Frisch et al. 2000; Bailey & Hahn 2001; Kager & Pater 2012) and 
productive knowledge of phonological alternations (Ernestus & Baayen 2003; Zuraw 2000; 
Hayes & Londe 2006) mirror statistical trends in the lexicon. Phonological acquisition is also 
shaped by the statistical structure of the input. For example, infants below the age of one are 
sensitive to phonotactic probability in their native language, and this sensitivity affects 
speech production, speech perception and word segmentation (Coady & Aslin 2004; Jusczyk 
et al. 1994; Mattys & Jusczyk 2001; Zamuner 2009; Saffran et al. 1996). The effects of 
frequency are also evident in acquisition order of phonological patterns, with developmental 
order varying cross-linguistically depending on input statistics (Edwards & Beckman 2008; 
Ingram 1988; Jarosz 2010; Levelt et al. 2000; Vihman 1993).  

Although clusters like [nb], [bd], [bn] are absent word-initially in English, Mandarin, 
and Korean, speakers of these languages do experience patterns with varying degrees of 
abstract phonological similarity to these clusters. There is a growing literature demonstrating 
the impressive abilities that computational models with minimal representational assumptions 
have to induce phonological generalisations predicting speakers’ performance in various 
behavioural tasks (Coleman & Pierrehumbert 1997; Albright 2009; Bailey & Hahn 2001; 
Hayes & Wilson 2008; Frisch et al. 2004; Daland et al. 2011). Recent studies show that these 
models are more successful when they rely on richer phonological representations like 
features, syllables, tiers, and metrical grids (Albright 2009; Hayes & Wilson 2008; Frisch et 
al. 2004; Daland et al. 2011; Kager & Pater 2012; Hayes 2011). Most pertinent to the current 
investigations, recent findings reveal that models with certain properties correctly predict 
sonority projections effects not only for English (Daland et al. 2011), but also for languages 
likes Korean and Mandarin and, in principle, CV languages (Hayes 2011), without the need 
to posit a built-in SSP principle. If sonority projection can be inferred by the learner with the 
right representational assumptions, this undermines the strong universalist interpretation of 
these findings. 

At the same time, much research on phonological learning suggests that reference to 
universal principles or phonetic biases may be necessary. Sonority projection is just one 
example of a wider range of studies demonstrating poverty of the stimulus effects wherein 
speakers exhibit preferences among novel structures that follow universal scales. Such effects 
are also observed in second language acquisition and loanword adaptation, for example 
(Broselow & Finer 1991; Broselow et al. 1998), and a number of studies show that these 
effects are not reducible to basic lexical statistics (see e.g. Berent et al. 2007; Davidson 
2006). Surfeit of the stimulus effects, on the other hand, demonstrate that language learners 
may fail to learn or learn more poorly generalisations that do not conform to universal 
principles or phonological naturalness even when the patterns supporting those 
generalisations are robustly represented in the input (Becker et al. 2012, 2011; Hayes et al. 
2009; Hayes & White 2013). Many of the most striking arguments for the role of universal 



Sonority Sequencing in Polish: Input Statistics vs. Universals 

 3 

biases come from developmental findings demonstrating remarkable consistency in 
developmental trajectories across languages. It has long been observed that typologically rare 
and marked structures tend to be acquired later by children regardless of their input (Jakobson 
1941; Stampe 1969). For example, research on the development of basic syllable structure 
across languages consistently finds that children acquire more marked syllable shapes (e.g. 
CVCC) later than less marked syllables shapes e.g. (CV) (Demuth 1995; Fikkert 1994; Jarosz 
2010; Levelt et al. 2000). Once again, these developmental progressions are often not directly 
derivable from the statistics of the input (see e.g. Levelt et al. 2000). One concrete example is 
the basic CV syllable in English, which is not the most frequent syllable shape in English 
child-directed speech (Jarosz 2010), but studies find that children generally acquire open 
syllables before closed syllables (Demuth 1995; Fee & Ingram 1982). Studies of 
phonological development also show that systematic preferences observed in children’s 
errors can be attributed to universal principles. For example, when children reduce complex 
onsets, there is a tendency to retain the lower sonority consonant (Gnanadesikan 1995; Pater 
& Barlow 2003). 

 
(2) Hierarchy of Increasingly Innatist Hypotheses 

a. Segmental Statistics 
Lexical Analogy (e.g. Bailey & Hahn 2001) 
Phoneme Co-occurrence (e.g. Vitevitch & Luce 2004) 

b. Structured Generalisation 
UCLA Phonotactic Learner (Hayes & Wilson 2008) 
Feature-Based Generalisation (Albright 2009) 

c. Substantively Biased Generalisation 
SG + Universal Grammar (e.g. Prince & Smolensky 1993) 
SG + Phonetically Based Phonology (e.g. Hayes et al. 2004; Hayes 1999; 
Wilson 2006) 

 
Thus, while the role of statistics is indisputable, the necessity, nature, and strength of 

any universal biases is unclear and actively debated. Complicating the picture is the fact that 
universal principles are often mirrored by language-particular statistics (Zamuner et al. 2005; 
Jarosz et al. to appear; Jarosz 2010; Levelt & van de Vijver 1998), which makes it difficult to 
disentangle the independent contribution of universal biases and statistics in any particular 
case. What remains controversial, then, is the extent to which linguistic knowledge can be 
reduced to experience with the language input. With respect to the SSP, is the language input 
sufficient to support sonority projection? If not, what kind of restrictions or biases must be 
present to constrain learning?  The present paper frames these questions by considering 
hypotheses falling along an increasingly universalist hierarchy, as schematised in (2). At the 
bottom end of this hierarchy is Segmental Statistics, which posits sensitivity to statistics of 
unstructured segmental representations. The middle level, Structured Generalisation, posits 
statistical learning coupled with rich phonological representations (such as features, syllables, 
tiers, grids) and the capacity to state generalisations over these abstract representations. 
Finally, the highest level, Substantively Biased Generalisation (a term inspired by Wilson 
(2006)), posits, in addition to structured generalisation, learning biases that reflect substantive 
phonetic or phonological preferences. Note that the category lexicalist used elsewhere (e.g. 
Daland et al. 2011) subsumes both Segmental Statistics and Structured Generalisation and 
that Substantively Biased Generalisation does not necessarily commit to innate substance.  
Substantively Biased Generalisation is also compatible with the view that the SSP is 
phonetically grounded, learned from universally shared experience with speech perception 
and articulation (Hayes et al. 2004; Hayes 1999). The present paper abstracts from many 
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important differences within each of these levels, focusing primarily on evidence that can 
differentiate models falling into the Structured Generalisation level as opposed to the 
Substantively Biased Generalisation level.  

After briefly reviewing the existing evidence that the Segmental Statistics Hypothesis 
is inadequate, this paper focuses on pushing Structured Generalisation to its limits and 
ultimately arguing for its inadequacy. The test case is the SSP in Polish, examined through 
the computational analysis of acquisition. There are several contributions. First, Section 2 
shows that Polish lexical statistics contradict the SSP, while the same statistics in English, 
Mandarin, and Korean mirror the SSP. This establishes Polish as a strong test case for the 
Structured Generalisation Hypothesis in the domain of sonority sequencing. Second, Section 
3 examines the role of the SSP in the development of initial clusters by four children 
acquiring Polish, showing that SSP is a robust predictor of cluster production accuracy. Next, 
Section 4 shows that the SSP effect cannot be reduced to lexical statistics of Polish and that 
the predictions of Structured Generalisation for Polish do not derive the SSP effect. Finally, 
Section 5 considers several alternative hypotheses, and 6 concludes. Before delving in to the 
lexical statistics of Polish, the following sections take a closer look at how Structured 
Generalisation can successfully model sonority projection effects in other cases. 

1.1 Existing Sonority Projection Modelling Findings 

After demonstrating sonority projection in English experimentally using Likert and head-to-
head acceptability ratings tasks, Daland et al. evaluate six lexicalist computational models’ 
abilities to capture sonority projection effects. They trained all models on a corpus of both 
syllabified and unsyllabified phonetically transcribed words to explore the effect of syllable 
structure. Three of the models fall within the Segmental Statistics class outlined above. The 
classical bigram model (Jurafsky & Martin 2008) assigns probability to novel forms based on 
the phoneme bigrams it contains. It has no notion of phonological structure, nor does it rely 
on features. The Phonotactic Probability Calculator (Vitevitch & Luce 2004) is similar, 
except that it maintains counts for bigrams and unigrams separately according to the serial 
position within the word in which they occur. It also has no inherent notion of features or 
phonological structure. Finally, the Generalised Neighborhood Model (Bailey & Hahn 2001) 
is an analogical model that assigns scores to novel words based on their similarity to existing 
lexical items. Similarity in this model is computed in terms of whole-phoneme insertions, 
deletions, or substitutions. Like the preceding models, this model treats phonemes as atomic, 
unstructured units and does not represent phonological structure of any kind.  

The other three models Daland et al. consider fall to at least some degree within the 
Structured Generalisation class. The syllabic parser (Coleman & Pierrehumbert 1997) relies 
on syllable structure and stress, but it treats phonemes (and indeed entire onsets and rhymes) 
as atomic units and has no capacity to generalise using phonological features. The UCLA 
Phonotactic Learner (Hayes & Wilson 2008) constructs and weights constraints on sequences 
of natural classes. The Featural Bigram model (Albright 2009) also relies on natural classes, 
assigning a score to novel strings based on the most probable combinations of natural classes 
they contain. Both of these models are capable of generalising on the basis of phonological 
similarity as measured by shared featural representations. 

Daland et al. show that only the last two models, the UCLA Phonotactic Learner and 
the Featural Bigram, are able to provide a good fit to the particpants’ ratings on unattested 
clusters, with the Phonotactic Learner performing substantially better. All models perform 
better when trained on syllabified data although the Phonotactic Learner does quite well with 
unsyllabified data as well. They conclude that two properties are essential for successful 
sonority projection: 1) the ability to generalise on the basis of phonological features, in 
particular features that can represent relative sonority, and 2) the ability to represent and 
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utilise phonological context or syllable structure to differentiate among clusters in different 
syllabic positions. On the basis of these results and the earlier reported findings (Berent et al. 
2007; Davidson 2006) that segmental statistics and lexical analogy cannot capture the 
behavioural results, it is clear that the Segmental Statistics class of hypotheses must be 
rejected and that at least Structured Generalisation is necessary. 
 What about Mandarin and Korean? In related work, Hayes (2011) shows that, given 
appropriate representations, the UCLA Phonotactic Learner can produce sonority projection 
when trained on toy languages with distributions like those in Mandarin and Korean and even 
on a toy languages with strict CV syllables. Hayes equips the UCLA Phonotactic Learner 
with a ‘modest UG’ (Hayes 2011: 836; Daland et al. 2011: 226-227) of 32 constraints 
referring to binary combinations of single-feature natural classes defined in terms of the 
features [syllabic], [consonantal], [approximant], and [sonorant], such as 
*[+sonorant][−approximant]. These constraints effectively militate against sequences of 
sonority thresholds. The toy language “Bwa” has only CV syllables plus 
obstruent+glide+vowel, while the toy language “Ba” has only CV syllables. Hayes shows 
that in both cases the learner is able to project SSP preferences on the basis of the input. The 
basic intuition behind why this is possible is that the learner generalises broadly on the basis 
of observed sonority sequencing patterns at the beginnings of words, including the rise from a 
singleton onset into the vowel. The input provides support for word initial sonority rises of 
varying degrees, with nearly all words providing positive support for sequences like 
#[−syllabic][−consonantal], some words providing support for larger rises like 
#[−sonorant][−consonantal], and no words providing support for the reverse sequences like 
#[−consonantal][−sonorant]. Therefore, without stipulating the direction of sonority 
sequencing preferences, learners with these representations can detect that Ba and Bwa 
favour rises at the beginnings of words. Notice, however, that these simulations are set up to 
focus the learner’s attention on word initial sequences up to the vowel, in effect providing 
syllabic context and a universal bias to treat pre-vocalic sequences separately from post-
vocalic sequences, which is part of the substantive content of the SSP. Nonetheless the fact 
remains that a model with no built-in preference about sonority sequencing in initial position 
per se, other than to base these preferences on the onset+vowel combination, can detect a 
lexical preference consistent with the SSP. 

To summarise, existing modelling results on sonority projection in Mandarin, Korean, 
and English (Daland et al. 2011; Hayes 2011; Berent et al. 2007) support rejection of the 
Segmental Statistics class of hypotheses, showing that sensitivity to syllabic context and the 
ability to generalise using features is essential, while success of Structured Generalisation 
shows there is lexical evidence for the SSP in these languages at an abstract level. 

1.2 Pushing Structured Generalisation to its Limits 
The fact that lexicalist models succeed in projecting SSP preferences in English, Mandarin, 
and Korean means these languages do not provide a true poverty of the stimulus test for 
sonority projection. Indeed, Hayes’ Ba example reveals there can be no (natural) poverty of 
the stimulus test case for sonority projection. Cross-linguistically, languages that allow 
smaller sonority rises also allow larger sonority rises, which forms an essential part of the 
empirical foundation for the SSP (Sievers 1881; Jespersen 1904; Steriade 1982; Selkirk 1984; 
Clements 1990). This means that the more impoverished the inventory of consonant clusters 
is in a language, the more skewed the distribution in that language must be toward favouring 
sonority rises. The black bars in Figure 1 depict this distributional skew for English, showing 
the relative proportion of various sonority rise degrees in word initial clusters in the English 
lexicon. These proportions are based on the type frequencies of English word-initial clusters, 
estimated from the CMU Pronouncing Dictionary, as reported by Hayes & Wilson (2008). 
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They utilise the coarse-grained five-level sonority scale, vowel > glide > liquid > nasal > 
obstruent (Clements 1990), which is also what Hayes (2011) and Daland et al. (2011) used in 
their simulations1. The lexical support for the SSP is evident in this figure: relative frequency 
dramatically increases with the rise in sonority. At a more abstract level, the lexicon shows 
substantial support for rises (82.6%), minimal support for plateaus (17.4%) and no support 
whatsoever for falls (0%). The analogous distribution for Mandarin and Korean is easy to 
imagine: the entirety of the distribution (100%) would be concentrated on large sonority rises 
(3), also providing lexical bias in support of SSP. 

If even an impoverished input distribution with purely CV syllables supports SSP 
projection, how can the predictions of Structured Generalisation be disentangled from those 
of the SSP? The answer is that the models must be tested on cases where the statistical trends 
in the lexicon actually contradict those of the SSP, and for that to be possible, the language 
input must be rich in SSP violators. The next section shows that Polish provides such a test 
case. Since Polish allows all sonority combinations, it is possible to examine phonological 
development of various sonority profiles in Polish to determine whether evidence of a 
preference for higher rises can be observed. As discussed above, some of the strongest 
arguments for the necessity of universal biases come from developmental findings that 
demonstrate children’s sensitivity to generalisations that are apparently unsupported by their 
language input. For lexicalist models to subvert the need for universal biases, they not only 
have to account for the evidence of universal bias in adults’ grammars, but they also have to 
contend with the evidence of biases in development.  
 

 
Figure 1 Relative Frequency of Sonority Rises in English and Polish 

To summarise, the specific questions addressed in the present work are: a) does 
Structured Generalisation predict sonority projection effects for Polish, b) do children 
acquiring Polish exhibit sensitivity to the SSP, and c) do predictions of Structured 
Generalisation capture children’s sonority preferences? The paper argues that the answers (a: 
no, b: yes, c: no) provide evidence to reject unbiased Structured Generalisation. 

2. The Input 

Polish is well-known for allowing SSP-violating clusters falling along all points of the scale 
in (1). Example words are shown in the third column of (3). While it is often acknowledged 
that sonority falls and other more complex configurations (e.g. trapped sonorants) are rare, 
                                                
1 Following Hayes & Wilson (2008) and Daland et al. (2011), these counts assume English [ɹ] is 
categorized as a glide. 
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often found in only a few lexical items, there is no shortage of obstruent-initial clusters with 
varying rise degrees in Polish. Nonetheless, formal analyses of syllable structure show that 
the SSP is active in the phonology of Polish (Jarosz 2006; Gussmann 1992; Bethin 1987; 
Rubach & Booij 1990, 1990; Bethin 1984, 1992). There are a number of productive 
phonological and morphological processes that depend on sonority sequencing. For example, 
voicing assimilation is normally blocked by a sonorant, unless that sonorant is flanked on 
both sides by obstruents or is word-final preceded by an obstruent, exactly where SSP 
violations are at stake (Gussmann 1992; Bethin 1984, 1992; Rubach & Booij 1990). There 
are also two morpho-phonological alternations, comparative and imperative allomorphy, 
where the choice of the allomorph is driven by sonority sequencing considerations (Rubach 
& Booij 1990; Bethin 1987; Rubach & Booij 1990). 
 
(3) Sonority Profile and Sonority Rise Type Frequency in CDS 

 Sonority Profile Frequency Example SSP SSP Frequency 
GO 7 0.1% [wza] "tear" -3 7 0.1% 

LO 26 0.2% [lvɨ] "lions" -2 26 0.2% 

NO 10 0.1% [mʂa] "mass" 
-1 14 0.1% 

LN 4 0.0% [lnu] "linen" (gen) 

OO 4919 45.1% [ptak] "bird" 
0 4942 45.3% 

NN 23 0.2% [mɲɛ] "me (inst.)" 

ON 642 5.9% [ɕɲɛk] "snow" 

1 694 6.4% NL 51 0.5% [mlɛkɔ] "milk" 

LG 1 0.0% [ljana] "vine" 

OL 2761 25.3% [drɔɡa] "road" 
2 3051 28.0% 

NG 290 2.7% [mjut] "honey" 

OG 2176 19.9% [ɡwɔva] "head" 3 2176 19.9% 
 
 To determine the relative frequency of initial clusters and sonority profiles in Polish, 
counts were estimated from the largest available frequency dictionary of child-directed 
speech in Polish (Haman et al. 2011). This corpus includes about 800k word tokens and 
about 44k word types of speech directed at 128 children aged 0;10-6;11. About 34k of these 
word tokens come from a sample of speech directed at the four children in the Weist-Jarosz 
corpus whose phonological development is analysed in the next section (Jarosz 2010; Jarosz 
et al. to appear; Weist et al. 1984; Weist & Witkowska-Stadnik 1986). The Polish CDS 
dictionary was manually culled to remove misspellings, abbreviations and acronyms (e.g. 
“USB”), exclamations (e.g. “mhmmmm”), and a small number of unassimilated foreign 
words (e.g. “huckleberry”). This resulted in a frequency corpus of about 43k word types. 

This sample of child-directed speech was then transcribed phonetically using 
automatic methods based on standard pronunciation in Polish, whose orthography is highly 
regular (Demenko et al. 2003). The transcription conventions were adapted to match those 
used in the child speech corpus analysed in the following section. Similar automatic methods 
have been used to construct many other child-directed speech corpora in a variety of 
languages (see e.g. Jarosz & Johnson 2013a; Brent & Cartwright 1996; Goldwater et al. 
2009; Batchelder 2002; Blanchard et al. 2010).  
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This process produced a corpus with nearly 11k word types and 115k word tokens 
beginning with bi-consonantal clusters. The primary focus of the analyses of the following 
sections is on type frequency, as it is type frequency that has been most fruitfully used for 
modelling of phonotactic and phonological generalisation learning in previous work (Albright 
& Hayes 2002; Becker et al. 2011). However, because many prior studies examining 
spontaneous production in children find token frequency to be predictive of developmental 
trends (Roark & Demuth 2000; Zamuner et al. 2004, 2005; Kirk & Demuth 2005; Stites et al. 
2004), including a prior analysis of the child speech examined here (Jarosz et al. to appear), 
token frequency is also calculated and considered in Section 5.1. The analysis focuses 
primarily on the coarse-grained SSP assumed in the previous sonority projection modelling 
studies. However, the corpus is also used to estimate frequencies for a finer-grained version 
of the sonority scale, and the consequences of this choice are explored in Section 0. Finally, 
the corpus is used to estimate the type and token frequencies of the nearly 200 segmental 
combinations occurring in bi-consonantal initial clusters (see Appendix) and other word-
initial onsets that are used for training computational models in Section 4.2. 
 Table (3) summarises the type frequency estimates for sonority profiles (e.g. “ON”= 
obstruent+nasal) in the second column and sonority rises (e.g. SSP = -2) in the last column. 
G stands glide, L for liquid, N for nasal, and O for obstruent. The relative frequency of the 
sonority rises is also depicted graphically in Figure 1 alongside the same statistics previously 
discussed for English. Clearly, sonority falls are indeed quite rare in Polish, accounting for 
less than 0.5% of the input combined. On the other hand, the input is rich with obstruents. 
Nearly all the input (96.4%) consists of obstruent-initial clusters, which is compatible with 
SSP in principle; however, nearly half (45.1%) of these are obstruent+obstruent 
combinations. Viewed alongside the English distribution, it is not obvious how the Polish 
distribution could give rise to an SSP preference. If anything, it appears that the input 
distribution favours most strongly the middle of the SSP scale, that is, the sonority plateaus.  

3. Sonority Sequencing Effects in Acquisition 
There are several previous studies of syllable structure development in Polish (Jarosz 2010; 
Jarosz et al. to appear; Łukaszewicz 2006; Zydorowicz 2007). Jarosz (2010) examines 
development of basic CV syllable structure, in particular the relative timing of the 
development of initial and final clusters, but does not examine the role of sonority 
sequencing. Łukaszewicz (2006) does examine sonority sequencing effects, but her focus is 
on extra-syllabic sonorants (sonorants that cannot be syllabified consistently with SSP) and 
processes like voicing that depend on it. Consistent with the present arguments, she 
demonstrates a role of SSP in children’s development of these particularly marked 
configurations. However, since extra-syllabic sonorants are both rare and marked, her 
findings do not specifically speak to the research questions examined presently. Zydorowicz 
(2007) examines cluster acquisition in all positions in the development of one child; her focus 
is primarily on whether morphological complexity of clusters affects development. She 
identifies developmental trends for clusters of varying sonority profiles, but does not identify 
any general patterns concerning the role of SSP. Finally, Jarosz et al. (to appear) examine 
acquisition of syllable structure and how it relates to input frequency, including showing 
developmental trends for onset clusters at the sonority level, but they do not systematically 
explore the role of the SSP. In sum, while there are a number of studies of cluster acquisition 
in Polish, the role of the SSP in initial cluster development is not well understood. 

The data for this analysis comes from the Weist-Jarosz Corpus of spontaneous child 
speech (Jarosz 2010; Jarosz et al. to appear; Weist et al. 1984; Weist & Witkowska-Stadnik 
1986) available via CHILDES (MacWhinney 2000). The corpus includes 2303 phonetically 
transcribed spontaneous productions of bi-consonantal initial clusters spoken by four 
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typically-developing children aged 1;7 to 3;2. The corpus provides a word-by-word 
alignment between children’s actual productions and their target pronunciations. All word 
initial clusters are considered in the analysis with the following exceptions: utterances 
involving onomatopoeia, wordplay, child-specific forms, incomplete word tokens, wholly or 
partially unintelligible word tokens, continuations of adult prompts, and repetitions or 
memorized passages. These cases are systematically marked in the corpus as such and can be 
removed automatically. 

Since the corpus aligns each word with its target pronunciation, it is straightforward to 
determine whether the initial cluster is produced accurately. Because the focus in this analysis 
is on acquisition of sonority sequencing patterns word initially, accuracy is coded after 
translating both the target and actual pronunciations to their respective sonority classes. This 
means that substitutions along other dimensions like place or voice (e.g. substituting [ɕ] for 
[ʂ], a common pattern) do not count as errors as long as the child produced the target sonority 
profile for the initial cluster.  

 
Figure 2 Accuracy By Sonority Rise 

 
Figure 3 Accuracy By Sonority Profile 

The children targeted seven sonority profiles in their productions2. Given the rarity of 
sonority falls in adult speech and in the lexicon, it is not surprising that young children’s 
spontaneous productions include hardly any attempts of these clusters. Nonetheless, the data 
provides a representative sample of plateaus and rises of various degrees. Overall, children 
produce clusters with the target sonority profile 61.7% of the time. The vast majority of 

                                                
2 The corpus includes 1 token of a liquid+fricative cluster and 3 tokens of stop+nasal cluster. These 
were excluded from the analysis due to lack of sufficient data. 
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errors are deletions of the first consonant (13.4%) or the second consonant (14%) or 
substitutions in sonority profile for intact clusters (4.0%). Vowel epenthesis occurs in only 
2.4% of the cases, and other scattered errors occur in the remaining cases (4.5%)3. The 
mosaic plots in Figure 3 (sonority profile) and Figure 2 (sonority rise degree) show the 
proportion of accurate responses on the vertical axis, and the cluster type on the horizontal 
axis. The width of each bar is proportional to the number of tokens in the children’s 
production data corresponding to each cluster type. These figures reveal that accuracy 
depends on the sonority sequencing of the cluster, with more accurate productions for higher 
sonority rises. 

Since the spontaneous production corpus is not balanced, logistic regression is used to 
determine whether the effect of SSP is significant after controlling statistically for a number 
of potentially confounding variables. This approach follows a number of recent studies 
utilizing regression modelling strategies to analyse spontaneous corpus data (Jarosz & 
Johnson 2013; Jarosz et al. to appear; Roland et al. 2006; Bane et al. 2010; Jaeger 2010). The 
logistic regression models are fitted using the lrm() function in the RMS package for R 
(Harrell 2014), which provides convenient methods for validating the resulting models. 
 The dependent variable is ACCURACY, coded at the level of sonority as described 
above, and the predictor of interest is SSP. The data are also coded for a number of control 
predictors. AGE (a continuous variable measured in months) is included to account for 
developmental progression over time. To account for individual differences in overall 
production accuracy, SUBJECT is included as a four-level factor4. Because children’s 
phonological development often proceeds at different rates, the interaction of SUBJECT and 
AGE is also included. To control for the possibility that mere experience with a particular 
word form affects the accuracy with which it is produced, (log) WORD FREQUENCY is 
included as a predictor5. Also included are four predictors to control for potential effects of 
the prosodic and morphological contexts in which these clusters occur. This includes WORD 
LENGTH (counted in number of syllables), STRESS (a binary variable indicating whether the 
syllable the cluster initiates carries primary stress)6, FUNCTION WORD (a binary variable 
indicating whether the cluster occurs in a closed-class word), and PREFIX (a binary variable 
indicating whether the cluster is morphologically complex, that is, composed of a mono-
consonantal fricative prefix, orthographic z or w, followed by a singleton consonant). Effects 
of prosodic position and prominence have been repeatedly observed in child production 
studies (see e.g. Demuth 1995; Fikkert 1994), and morphological factors have also been 
found to affect production (Zydorowicz 2007) so these predictors are included to ensure the 
observed effects of SSP are not attributable to imbalances in the distribution of these factors. 
To summarise, the base model includes seven control variables and one interaction term with 
the following associated number of parameters for each: Age (1), Subject (3), Age x Subject 
(3), Word Frequency (1), Word Length (1), Prefix (1), Function Word (1), and Stress (1), for 
a total of 12 parameters.  

The superset model with SSP and the control predictors is shown in (4). The main 
finding is that SSP is positively associated with production accuracy, indicating that clusters 

                                                
3 Examples of how error types vary by sonority are shown in mosaic plots in the Appendix. 
4 Although subject-level predictors are often included in mixed effects regression models as random 
effects (see e.g. Jaeger 2008) the subject factor in these data has only four levels and hence does not 
provide sufficient information to estimate group-level variation (Gelman & Hill 2006:247). 
5 Because log(0) is undefined and because a handful of children’s targets do not occur in the child-
directed speech corpus, we use log(frequency + 1) for all of the frequency predictors. 
6 Primary stress was assigned automatically to penultimate syllables and monosyllables according to 
the regular stress pattern of Polish lexical stress (Rubach & Booij 1985). 
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with higher sonority rises are produced more accurately by the children after statistically 
controlling for all of the above potential confounds. Nested model comparison with the base 
model shows SSP is highly significant (χ2 (1) = 52.7; p < 0.0001). Although the control 
predictors are not the focus of this analysis, it is worth noting that their contributions to the 
model are sensible. Production accuracy increases with age, although the degree to which this 
occurs varies by child.  Clusters that result from the concatenation of mono-consonantal 
prefixes and singleton onsets are produced significantly less accurately. Since these prefixes 
express verbal aspect, this is consistent with the well-known tendency for children to omit 
functional, morpho-syntactic markers in spontaneous speech (and indeed, the only difference 
in the error patterns for these clusters is a higher rate of deleting the first consonant, i.e. the 
prefix). Clusters at the beginnings of stressed syllables tend to be more accurate and those in 
closed-class items less accurate, although these effects only tend toward significance. Finally, 
word frequency is negatively associated with production accuracy, suggesting that children 
are more likely to reduce clusters in common words. 
 
(4) Logistic Regression Model Predicting Cluster Production Accuracy 

 β S.E. Wald Z Pr(>|Z|) 
Intercept -11.16 1.92 -5.8 <0.0001 
Subject     
     Kub 9.24 2.66 3.47 0.001 
     Mar 9.86 6.02 1.64 0.101 
     Waw 10.48 1.94 5.4 <0.0001 
Age 0.47 0.09 5.38 <0.0001 
Function Word -0.29 0.17 -1.64 0.100 
log(Word Frequency) -0.11 0.03 -3.51 0.001 
Stress 0.33 0.20 1.64 0.101 
Prefix -0.65 0.14 -4.47 <0.0001 
Word Length 0.05 0.12 0.45 0.650 
SSP 0.28 0.04 7.16 <0.0001 
Kub * Age -0.38 0.11 -3.46 0.001 
Mar * Age -0.43 0.30 -1.4 0.163 
Waw * Age -0.42 0.09 -4.79 <0.0001 

 
To examine the robustness of the SSP predictor to fluctuations in the data sample, the 

validate() function in the RMS package was used to obtain bootstrap samples, calculate 
model optimism, and perform backwards elimination on the bootstrapped models. Out of 200 
bootstrap validation samples with backward elimination, SSP was retained in the model 200 
times. Furthermore, the model shows a small amount of shrinkage: the original Dxy is 45.5, 
the optimism is 0.011, and the corrected Dxy is 44.4. This is substantially higher than the 
corrected Dxy of the base model that excludes SSP (40.9). While these findings nonetheless 
depend on the particulars of this corpus, the results of the validation procedure provide some 
reassurance that the role of the SSP is robust in this data sample.  

4. Predicting Developmental Effects 
This section examines in detail the predictions that Structured Generalisation makes for 
sonority sequencing in Polish. Three approaches to modelling sonority projection are 
considered and rejected. Section 4.1 examines the relationship between frequency in the 
input, the SSP, and accuracy. Section 4.2 generates predictions using the UCLA Phonotactic 
Learner in two ways: first (4.2.1), by allowing the learner to induce its own constraints based 
on a corpus of segment-level word-initial onsets, and second (4.2.2), by weighting a pre-
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specified set of sonority sequencing constraints as in Hayes (2011). For sonority projection to 
be successful, the models must account for the developmental SSP effect and generate 
systematic preferences for larger rises over smaller rises, and smaller rises over plateaus. 
None of the models generate these predictions on the basis of the Polish input distribution. 

4.1 Raw Segmental and Class Frequency 
The first step in determining whether frequency in the input could account for the 
developmental results presented in the preceding section is to better understand how input 
frequency is associated with production accuracy and the SSP. In addition to examining the 
type frequency distribution over sonority profiles and rises (Table (3)), the section also 
considers the frequency of initial segmental bigrams (e.g. clusters; shown in the Appendix). 
 

 
Figure 4 Association Between Accuracy and Log Type Frequency 
Figure 4 summarises the association between children’s production accuracy and three 
measures of log type frequency: frequency of initial segmental bigrams, frequency of 
sonority profiles, and frequency of sonority rises. Each box and whisker plot is a visual 
summary of the distribution, showing the median (horizontal line), the upper and lower 
quartiles (the box), and the maximum and minimum (the whiskers), excluding any outliers 
(the dots). If variation in the production accuracy of initial clusters is driven by one of these 
measures, higher frequency on that measure should be associated with higher production 
accuracy. As the box and whisker plots illustrate, a positive association exists only for 
segmental bigrams. For sonority profiles and rises, lower frequency is associated with higher 
production accuracy. This is not the association one would expect if frequency of these 
classes were driving development directly. 

Given that higher rises are predictive of higher production accuracy, this suggests that 
class-level frequency of sonority profiles and sonority rises is unlikely to yield sonority 
projection. This is confirmed by examining the rank correlation (kendall’s 𝜏) between each of 
these frequency measures and the SSP for all the cluster types targeted by the children. For 
segmental bigrams there is a weak positive correlation between frequency and SSP (𝜏   = 
0.289), while for sonority profiles (𝜏   = −0.657) and sonority rises (𝜏   = −0.737), the 
correlations are negative. Therefore, while it is in principle possible for sonority projection to 
occur on the basis of segmental bigram type frequency, the class-level frequencies, at least 
when used directly, predict anti-SSP preferences. This is not surprising given the earlier 
figures showing that sonority plateaus are the distribution mode in Polish. 

The strongest test of these raw frequency measures is a nested model comparison 
including all the control predictors discussed above plus each frequency measure compared to 
a superset model that also includes SSP. If the superset model provides a significantly better 
fit to the developmental data that warrants the extra degree of freedom (as determined by a χ2 
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test), this means that the frequency measure does not account for the effect of SSP on 
production accuracy. If, on the other hand, a measure has fully accounted for the SSP effect, 
the SSP predictor in the superset model would be superfluous. Table (5) summarises the 
results of these nested comparisons for each of the frequency measures. Segmental bigram 
frequency is a significant predictor of production accuracy after all control predictors are 
included in the model (χ2 (1) = 34.8; p < 0.0001). Higher segmental frequency is associated 
with more accurate production (β = 0.235, z = 5.84, p < 0.0001). However, the superset 
model with both segmental frequency and SSP is superior (χ2 (1) = 34.8; p < 0.0001), 
indicating that segmental bigram frequency does not subsume the effect of SSP on production 
accuracy. 200 bootstrap validation samples confirm that SSP is always retained in the model.  
 
(5) Summary of Model Comparisons for Type Frequencies 

 Segmental Bigram Sonority Profile Sonority Rise 
  Base +Freq +Freq+SSP +Freq +Freq+SSP +Freq +Freq+SSP 

Dxy 0.425 0.445 0.47 0.437 0.459 0.453 0.458 
LR 357.4 392.2 427.0 375.77 412.30 388.65 409.83 
χ2(1)   34.8 34.8 18.4 36.5 31.3 21.2 

p   < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
 

 
Figure 5 Association Between Segmental Bigram Type Frequency and SSP 

Both sonority profiles (β = −0.256, z = −4.05, p < 0.0001) and sonority rises (β = 
−0.657, z = −5.39, p < 0.0001) are predictive of accuracy, but in the wrong direction, as 
expected from the above discussion: lower frequency is predictive of higher accuracy. More 
importantly, in both cases the superset model with SSP is superior, indicating that these 
measures do not subsume the SSP effect. Finally, the 200 bootstrap validation procedure 
confirms that SSP is retained on all 200 samples for sonority profiles and 199 samples for 
sonority rises, while the frequency measures are dropped in each case, indicating they are not 
reliable predictors of accuracy. 

To summarise, none of these measures directly supports sonority projection. Sonority 
profile and sonority rise class frequency predict anti-SSP preferences. Segmental bigram 
frequency is predictive of production accuracy, and is weakly positively correlated with SSP. 
However, this measure reflects properties of clusters that are at least partially orthogonal to 
the SSP since both predictors remain highly significant in a superset model. The box and 
whisker plot in Figure 5 shows graphically why segmental bigrams fail to fully account for 
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the SSP effect. While there is a noticeable upward trend as the sonority rise increases 
(accounting for the positive correlation), the range of frequency values for plateaus (SSP=0) 
essentially overlaps the entire range of values for each of the other rise degrees, some of 
which overlap one another almost entirely (SSP=2 and SSP=3). This means it is not possible 
to reliably predict on the basis of these frequencies that sonority plateaus (SSP=0) should be 
systematically disfavoured to all the others. Likewise, it is not possible to predict that 
moderate rises (SSP=2) should be disfavoured compared to large rises (SSP=3). 

4.2 UCLA Phonotactic Learner 

This section explores whether the computational model that has shown the greatest capacity 
for sonority projection in previous work on other languages (Daland et al. 2011; Hayes 
2011), the UCLA Phonotactic Learner (Hayes & Wilson 2008), can capture the observed 
developmental SSP effect in Polish. 

4.2.1 Inducing Constraints from Scratch 
This section utilises the modelling strategy Daland et al. (2011) used to show sonority 
projection for English, except that the training data are limited to initial onsets. As discussed 
earlier, Daland et al. found that all models performed better with syllabified data as this 
enables models to state generalisations separately for onset and coda consonant sequences. 
Limiting the model’s attention to initial onsets simplifies the learning problem. In other 
respects the set-up follows Daland et al.; in particular, all initial onsets together with their 
segmental type frequencies are included in the training data, including null, singleton, bi-, 
and longer consonant sequences. The singleton onsets account for the vast majority of the 
data: while the type frequency of bi-consonantal clusters is about 11k, the type frequency of 
singleton onsets is over 26k, and the frequency of singleton obstruents alone is over 19k. This 
presumably gives the model the best chance possible to discover a preference for word-initial 
rises since obstruent+vowel sequences are the largest possible rise and are abundantly 
represented in the data. Three models are considered with cut-offs on the number of induced 
constraints at 100, 200, and 300. The trained models are tested on the bi-consonantal clusters 
targeted by the children and evaluated on their ability to predict accuracy. 
 Figure 6 visualises the association between the SSP and the scores assigned to bi-
consonantal clusters according to the 100 constraint and 200 constraint models. The size of 
the ‘dots’ in the scatterplot is proportional to the frequency of those target clusters in the 
children’s productions. The scores are the summed violations of the weighted constraints and 
should be interpreted as penalties. Therefore, successful sonority projection requires lower 
scores for higher rises. The regression line plotted in the figure shows that this is indeed the 
direction of the association predicted by the models. This is because the models pick out 
particular segmental combinations to penalise, and these tend to be lower SSP clusters. 
However, the scatterplot also shows that the model assigns a penalty only to a small portion 
of the clusters targeted by the children: most of the clusters receive no penalties. Comparing 
the 100 constraint to the 200 constraint model reveals that the 200 constraint model induces 
additional constraints to penalise specific segmental combinations, and these include some 
constraints against larger rises as well as additional small rises and plateaus. Not surprisingly, 
the additional constraints in the 200 constraint model tend to penalise low frequency clusters. 
As the learner induces more constraints it penalises more and more of the attested clusters, 
but rather than penalising sonority plateaus as required for successful sonority projection, the 
model is simply inducing constraints that allow it account for the rarity of low frequency 
clusters in the segmental type frequency distribution. Obstruent+obstruent sequences in 
Polish have widely varying frequencies (recall the wide distribution in Figure 5), and some 
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are underrepresented. The fact that the correlation between the model scores and the 
segmental bigram type frequency increases from the 100 constraint model (𝜏  = −0.312) to the 
200 constraint model (𝜏  = −0.426) to the 300 constraint model (𝜏  = −0.474) is consistent with 
this claim. The model is doing what it is designed to do: induce constraints to penalise 
underrepresented patterns, and while particular sonority plateaus are underrepresented, 
sonority plateaus in general are not. 
 

 
Figure 6 Association Between Model Predictions and SSP 
 As before, the strongest test of the models is to check whether they can capture the 
SSP predictor in a nested model comparison. The results of these model comparison 
evaluations are summarised in the left half of (6).  Qualitatively, these models show the same 
pattern of results as the segmental type frequency of the preceding section. Model scores are 
significant predictors of children’s production accuracy (100:χ2 (1) = 51.1; 200: χ2 (1) = 37.1; 
p < 0.0001), and higher scores (e.g. penalties) are predictive of lower accuracy for both the 
100-constraint model (β = −0.276, z = −6.96, p < 0.0001) and the 200-constraint model (β = 
−0.352, z = −6.07, p < 0.0001). However, neither model can capture the SSP effect. SSP is 
highly significant in a nested model comparison for both the 100-constraint model (χ2 (1) = 
29.4; p < 0.0001) and the 200-constraint model (χ2 (1) = 33.0; p < 0.0001). For both models, 
bootstrap validation retained SSP on 200 out of 200 samples. The predictor based on the 100-
constraint model was retained on all 200 samples, while the predictor based on the 200-
constraint model was somewhat less reliable, retained on 193 samples. The results for the 
300-constraint model (not shown) are nearly identical to those for the 200-constraint model. 

 
(6) Summary of Statistical Tests for UCLA Phonotactic Learner Predictions 

 Induce 100 Induce 200 Hayes2011 UG32 Hayes2011 UG64 
  +F +F+SSP +F +F+SSP +F +F+SSP +F +F+SSP 

Dxy 0.453 0.473 0.447 0.468 0.427 0.46 0.435 0.459 
LR 408.48 437.88 394.43 427.41 360.19 412.81 371.97 412.26 
χ2(1) 51.1 29.4 37.1 33.0 2.8 52.6 14.6 40.3 

p < 0.001 < 0.001 < 0.001 < 0.001 0.093 < 0.001 < 0.001 < 0.001 
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consider just those clusters to which the 200-constraint model assigns no penalties 

OG

OO

OLOO ON

OO

NN

OO
ON

0

2

4

0 1 2 3

n
200

400

600

800

UCLA 100

OG

OO

OLOO

OO

ON

OO

OL

OO

OO

OO
ON

ON

0

1

2

3

0 1 2 3

n
200

400

600

UCLA 200



Sonority Sequencing in Polish: Input Statistics vs. Universals 

 16 

whatsoever. Restricting attention just to these ‘perfect’ clusters, SSP is a significant predictor 
(χ2 (1) = 32.5; p < 0.0001). This means there are robust effects of the SSP on production 
accuracy that these models are failing to capture. 
 In sum, the UCLA Phonotactic Learner induces constraints that penalise 
underrepresented clusters. While children are generally less accurate on the penalised 
clusters, these phonotactic constraints do not reflect the SSP in general, which remains highly 
significant in nested model comparisons. 

4.2.2 Weighting Pre-specified Sonority Threshold Sequencing Constraints 

The previous section showed that the UCLA Phonotactic Learner induces constraints for 
Polish that do predict sonority projection. However, perhaps if the learner is restricted to 
working with Hayes’ ‘modest UG’ of 32 constraints, which worked for Ba and Bwa, it will 
be more successful. 
 Recall that Hayes’ constraint set includes constraints on combinations of sonority 
thresholds as defined by the features [syllabic], [consonantal], [approximant], and [sonorant]. 
The set includes SSP-abiding constraints like *[+sonorant][−approximant] as well as anti-
SSP constraints like the reverse *[−approximant][+sonorant]. It therefore does not directly 
encode pro-SSP preferences: it allows the opposite preferences to be discoverable in 
principle. However, because the constraints refer to sonority thresholds, the constraints are in 
stringency relationships, constraining the learner substantially. The learner cannot reproduce 
arbitrary frequency distributions over sonority profiles with this constraint set. For example, 
there is no way for the learner to penalise (only) obstruent+nasal combinations, which 
happen to be underrepresented in Polish. It could weight *[−sonorant][+sonorant] heavily, 
but this constraint penalises all obstruent+sonorant sequences, which are common overall.  
 The careful reader may have noticed that there are in fact 64, not 32, possible 
combinations of four binary features in two positions. Hayes’ set of 32 constraints includes 
only those constraints that penalise opposing sonority thresholds such as 
*[+sonorant][−sonorant] and *[−sonorant][+sonorant] (Daland et al. 2011: 226-227). It does 
not include constraints penalising sonority threshold combinations that refer to the same side 
of the sonority scale, such as *[+sonorant][+sonorant] or *[−sonorant][−sonorant]. This 
means the set of 32 constraints is also restricted in that it cannot penalise (only) combinations 
of high sonority segments or (only) combinations of low sonority segments. Returning to the 
obstruent+nasal example, the set of 32 constraints do not provide a way to penalise this 
low+low sonority combo: constraints such as *[−sonorant][−approximant] are not available.  

To examine the consequence of this restriction, the results of simulations with both 
the 32 constraint set and the full 64 constraint set are presented. As in the previous section 
and in Hayes’ Ba and Bwa simulations, the training set includes all word-initial onsets. The 
test set is once again the bi-consonantal clusters targeted by the children. Since the 
constraints distinguish segments on only four manner features, only sonority distinctions are 
representable by this system. Thus, the segments in the training and test sets can be converted 
to their respective sonority classes (O, N, L, G, and V) and their frequencies collapsed. 

The predicted sonority sequencing preferences of both models are depicted 
graphically in Figure 7. The model with 32 constraints primarily penalises sonorant-initial 
clusters. Obstruent-initial clusters receive scores close to zero. Since obstruent-initial clusters 
account for more than 90% of the data, it is not surprising that the regression line shows 
hardly any relationship to SSP. If the model has the ability to detect anti-SSP preferences, 
why did it not do so for Polish? The reason is that the 32 constraint set is so limited that only 
strong evidence of a statistical preference for sonority falls word-initially would be expected 
to trigger an anti-SSP generalisation. Because initial sonority falls are not common in Polish, 
accounting for less than 0.5% of the lexicon, the model does not predict an anti-SSP 
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preference. Indeed, an anti-SSP preference would be expected with this constraint set only for 
languages that predominantly have sonority falls across all onset+vowel combinations. 

 

 
Figure 7 Association Between Model Predictions and SSP 

The 64-constraint model has more freedom to match the observed distribution in 
Polish. It penalises all observed clusters, sonorant-initial clusters most heavily, and it also 
manages to penalise the underrepresented obstruent+nasal clusters. It does this by highly 
weighting various constraints penalising high+high sonority combinations (common to ONV, 
OLV, OGV, but not OOV) and penalising low+low sonority combinations (common to OOV, 
ONV, and NNV, but not OLV or OGV). This allows ONV to accumulate violations from 
both sets of constraints while OOV and OLV violate only a subset of these. Importantly, 
constraints against high+high combinations are also supported by the singleton onsets, which 
are primarily OV. The additional ‘uni-directional’ constraints in this set are crucial for these 
predictions, which in this case are unwelcome. Because of the constraints’ availability, the 
learner incorrectly generalises from the singleton onsets that high+high combos (e.g. GV) 
should be disfavoured when they occur in complex onsets (e.g. OGV). As a consequence of 
the improved fit to the sonority profile frequency distribution in the data, the 64-constraint 
model makes worse predictions from the perspective of the SSP, predicting higher penalties 
for higher sonority rises on average. In general, this simulation demonstrates that generalising 
from the singleton CV transitions does not always produce desirable consequences.  

The model comparisons in the right half of Table (6) confirm the above conclusions 
statistically. The predictor based on the 32-constraint model is only marginally significant (χ2 

(1) = 2.8; p = 0.093). This weak association goes in the wrong direction, and backwards 
elimination using bootstrap validation drops it. The superset model with SSP included is 
superior  (χ2 (1) = 52.6; p < 0.0001), and SSP is retained on all bootstrap validation samples. 
Finally, the predictor based on the 64-constraint model patterns similarly, except that it is a 
significant predictor (in the wrong direction) in the model without SSP (β = 0.238, z = 3.6, p 
< 0.001). On the majority of bootstrap validation backward elimination samples, the predictor 
is dropped. SSP, on the other hand, is highly significant in the superset model (χ2 (1) = 40.3; p 
< 0.0001) and is retained in all bootstrap backward elimination samples. 
 To summarise, two restricted constraint sets penalising combinations of sonority 
thresholds do not generate sonority projection for Polish like they did for Ba and Bwa. 
Indeed, the simulations demonstrate that unconstrained generalisation from CV transitions to 
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CCV sequences can produce the unwelcome consequence of most strongly penalising 
complex clusters with the largest possible rises (OGV). For the learner to generalise as 
intended, something would have to prevent it from applying what it learns about CV 
transitions to the CV portion of CCV sequences. The learner would instead have to be 
compelled to apply these generalisations (only) to the CC portion of CCV, effectively 
encoding a built-in SSP bias. 

5. Some Alternatives 
The previous section showed that the lexicalist approaches that have worked well to generate 
sonority projection for other languages fail to do so for the Polish input distribution. Before 
concluding that unbiased generalisation does not project the SSP for Polish, the following 
sections consider two alternative ways of analyzing the input and the SSP scale, respectively. 

5.1 Token Frequency 

For completeness, this section demonstrates that relying on token frequency instead of type 
frequency does not provide a way out for the lexicalist hypothesis. Figure 8 shows the 
association between accuracy and token frequency measures, analogous to the figures above 
for the type frequency measures. The results are similar, albeit less promising: token 
segmental bigram frequency is not positively associated with accuracy. 
 

 
Figure 8 Association Between Accuracy and Token Frequency 
(7) Summary of Statistical Tests for Token Frequencies 

TOK/SSP4 Segmental Bigram Sonority Profile Sonority Rise 
  Base +Freq +Freq+SSP +Freq +Freq+SSP +Freq +Freq+SSP 

Dxy 0.425 0.425 0.458 0.445 0.459 0.452 0.458 
LR 357.4 357.74 410.20 380.07 412.49 385.61 410.03 
χ2(1)   0.366 52.47 22.7 32.41 28.24 24.42 

p   0.545 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
 
A summary of model comparisons analogous to those in Table (5) above is shown for 

token frequencies in Table (7). The pattern of results is similar, except that token segmental 
bigram frequency is not predictive of production accuracy. Just like the corresponding type 
frequencies, sonority profile (β = −0.328, z = −4.54, p < 0.0001) and sonority rise (β = 
−0.569, z = −5.07, p < 0.0001) token frequencies are predictive of production accuracy, but in 
the wrong direction. The superset models with SSP are superior in all cases, and SSP is 
retained as a predictor in all but one of 200 backwards elimination bootstrap samples. Thus, 
token frequencies do not provide a way to capture the developmental SSP effect.  
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5.2 Finer-Grained SSP 
The analyses above follow prior modelling studies in assuming the coarse-grained sonority 
scale that worked well for generating sonority projection in other languages. The granularity 
of the sonority scale is often debated, however. Could it be that the coarse sonority scale is 
working against the lexicalist hypothesis by lumping all the obstruents together? This section 
first demonstrates that the same conclusions about children’s sensitivity to the SSP are 
reached when a finer-grained sonority scale that separates plosives and fricatives is used 
(Selkirk 1984). Interestingly, the finer-grained sonority scale turns out to be a better predictor 
of children’s production accuracy than the coarse scale. This is unexpected given that formal 
analyses of Polish phonology explicitly argue for the coarse-grained scale. It is consistent, 
however, with recent findings suggesting that sonority projection effects differentiate 
fricatives and stops (Lennertz & Berent 2015; Tamási & Berent 2014). The section then 
shows that the frequency predictions calculated on a finer-grained scale yield qualitatively 
similar pattern of results as the coarse-grained scale examined above. 

 
Figure 9 Accuracy By Finer-Grained Sonority Profile 

 
Figure 10 Accuracy By Finer-Grained Sonority Rise 

(8) Summary of Statistical Tests for Frequencies Using Finer-Grained Sonority Scale 
 Sonority Profile Sonority Rise 
  Base +Freq +Freq+SSP +Freq +Freq+SSP 
Dxy 0.425 0.428 0.471 0.434 0.469 
LR 357.4 362.9 429.44 365.91 422.31 
χ2(1)   5.5 66.6 8.54 56.4 
p   0.019 < 0.0001 0.003 < 0.0001 

 
Figure 9 and Figure 10 visualise the relationship between accuracy and finer-grained 

sonority profiles and rises, respectively (‘F’=fricative, ‘P’=plosive). The main differences 
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from before are that finer-grained sonority treats FP as a mild sonority fall, PF as a mild rise 
like FN, PG as a larger rise than FG or PL, and PL as a larger rise than FL. Inspection of 
Figure 9 reveals that most of these difference align well with accuracy: FP is the least 
accuracy cluster type, PF is close in accuracy to FN, and children are less accurate on FL than 
PL. PG does not appear to be favoured by children relative to FG, however. Nonetheless, a 
nested model comparison shows that a predictor based on the finer-grained SSP (fSSP) is 
highly significantly predictive of production accuracy after controlling for the various 
potential confounding variables discussed earlier (χ2 (1) = 64.7; p < 0.0001). As expected, the 
association is positive: higher fSSP is assossiated with higher accuracy (β = 0.24, z = 7.95, p 
< 0.0001). Out of 200 bootstrap validation samples with backward elimination, fSSP is 
retained in the model 200 times. Overall, the model shows a small amount of shrinkage: the 
original Dxy is 46.7, the optimism is 0.014, and the corrected Dxy is 45.3.  

As mentioned earlier, an unexpected finding, is that fSSP is a better predictor of 
children’s accuracy than SSP. This is verified by evaluating a superset model that adds SSP. 
The superset model is not superior to the model with just fSSP (χ2 (1) = 0.059; p > 0.8), 
indicating that SSP is superfluous once fSSP is in the model. Accordingly, the opposite 
nested model comparison reveals that fSSP makes a significant contribution to a model that 
already has SSP (χ2 (1) = 12.1; p < 0.001). Note that this is not a matter of degrees of freedom 
since both SSP and fSSP are continuous predictors with one degree of freedom: this just 
means that the additional distinctions made on the finer-grained sonority scale are reflected in 
the children’s production accuracy. As further verification of this result, the backwards 
elimination validation procedure retains fSSP and not SSP. 

To conclude this discussion, Table (8) shows that calculating frequency along the 
finer-grained sonority scale does not rescue the lexicalist approach. Just like the 
corresponding coarse-grained type frequencies, fine-grained sonority profile (β = −0.143, z = 
−2.32, p < 0.05) and sonority rise (β = 0.2725, z = 2.93, p < 0.01) type frequencies are 
predictive of production accuracy. The only difference is that sonority rise frequency is 
associated in the right direction with accuracy. Just as with coarse-grained frequency, the 
superset models with SSP are superior in both cases, and SSP is retained as a predictor in all 
200 backwards elimination bootstrap samples7. Thus, coarse-grained frequencies do not 
provide a way to capture the developmental SSP effect. 

6. General Discussion and Conclusion 

To summarise, the major findings presented in this paper are: 
(i) The sonority sequencing distribution of initial bi-consonantal clusters in Polish peaks 

at sonority plateaus, with nearly half of the input involving combinations of 
obstruents. 

(ii) Lexicalist models that have succeeded at predicting sonority projection effects for 
English, Mandarin, and Korean do not predict systematic SSP-abiding preferences for 
Polish. 

(iii) The spontaneous productions of four typically-developing children acquiring Polish 
reveal a robust effect of SSP on production accuracy. 

(iv) None of the lexicalist models or frequency measures can capture the SSP effect 
observed in the developmental data.  

More generally, returning to the hierarchy of hypotheses laid out in the introduction, the 
results presented here are consistent with neither the Segmental Statistics nor the Structured 
Generalisation classes of hypotheses. They therefore suggest that some kind of universal 
pressure or bias is required to explain the robust effect of SSP on production. While the 
                                                
7 These are the numbers using the weaker SSP predictor. Results are similar when fSSP is used. 
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present findings support the need for universally biased phonological learning, they do not 
differentiate between various possible sources of this universal bias. The universal bias could 
be due to innate preferences of the phonological grammar, or it could be induced on the basis 
of phonetic difficulty. The results are equally compatible with a bias that makes direct 
reference to the SSP as a grammatical principle as they are with a constellation of lower-level 
phonetic pressures that give rise to a similar preference scale. The conclusion supported by 
these findings is that phonological learning makes reference to substance in some way. 
Adjudicating between alternative notions of substance and universal bias is an important and 
difficult question that is beyond the scope of the present analyses.  

These results significantly expand on and develop the arguments presented in 
previous work on sonority projection (Berent 2008; Berent et al. 2009, 2007, 2008; Zhao & 
Berent 2015; Lennertz & Berent 2015; Tamási & Berent 2014; Berent et al. 2012, 2011; 
Daland et al. 2011; Hayes 2011; Ren et al. 2010; Davidson 2006). This paper does not 
dispute the findings presented by Hayes (2011) and (Daland et al. 2011). The findings 
presented here are consistent with their conclusions that lexicalist models can give rise to 
sonority projection in English, Mandarin, and Korean. Indeed, the argument emphasised here 
is that the compatibility between the predictions of lexicalist models and the SSP for these 
languages is precisely why they are not the right languages to differentiate between these two 
hypotheses. This is not to say that the sonority projection findings for these languages are not 
a significant discovery. On the contrary, that sonority projection has been reliably 
demonstrated in numerous studies provides clear and consistent evidence differentiating 
between the Segmental Statistics class of hypotheses and the Structured Generalisation class 
of hypotheses, indicating that at least Structured Generalisation is necessary.  

The primary contribution of this work is to expand the scope of this line of research to 
a language where the predictions of Structured Generalisation fall short. This opens the door 
to a deeper and more nuanced understanding of how universal bias may interact with 
Structured Generalisation. The developmental findings presented here provide initial 
evidence that reference to a universal bias of some sort is needed. Just as importantly, 
however, this paper highlights sonority sequencing in Polish as an important test case for 
further investigation. More generally, the results here highlight the importance and utility of 
integrating computational modelling with behavioural data on human learning. This paper has 
argued that at least Structured Generalisation is necessary to explain existing results on 
human learning of phonology and phonotactics and has presented initial evidence that 
Structured Generalisation should be further enhanced with a universal bias. Given the 
complexity of these learning models, it is only by understanding the predictions of these and 
other explicit computational models that concrete hypotheses about learning can be tested and 
compared. Sonority sequencing in Polish provides an excellent example. It is only through 
generating predictions of explicit models positing a particular balance between the role of 
statistics, abstract representations, and substantive biases that the ways in which existing 
models must be refined can be understood. While the present results have identified a 
potential universal bias at work in phonological learning in Polish, much remains to be 
discovered about the nature of this bias, the role it plays in various behavioural tasks, and 
how its effects unfold over the course of phonological acquisition. Assuming subsequent 
behavioural investigations confirm the effect of SSP reliably shows up in early productions of 
children acquiring Polish, it remains to be determined how or if this effect also affects 
perception, acceptability, and other tasks, and how adult learners ultimately reconcile the 
preferences of the universal SSP scale with their language experience. Do adult Polish 
speakers exhibit sonority projection effects for unattested, but licit clusters? Given that there 
is evidence for an active role of SSP in the phonology of Polish, these results also motivate 
further examination of how exactly adult speakers’ productive knowledge of these processes 
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depends on the combined effects of the SSP and the input statistics. A mutually-informing 
link between computational modelling and behavioural studies are key to further 
understanding of these and other essential questions about how phonological learning works. 
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Figure 11 Error Types by Finer-Grained (left) and Coarser-Grained (right) Sonority  
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(9) Initial Segment Bigram Type Frequency in CDS 
pʂ 1522 zm 117 xw 49 zl 29 xm 17 ʐw 9 wz 5 tn 2 
st 427 ʂt ͡ʂ 116 ʂp 48 ml 29 zʐ 17 d ͡ʑv 9 t ͡sn 5 ft ͡s 2 
kr 411 zn 107 zɲ 47 d ͡zv 28 ft ͡ʂ 17 tl 9 ʐm 4 vd ͡ʑ 2 
sp 370 sm 106 xr 46 kt 28 dm 16 sn 9 st ͡ʂ 4 t ͡ʂx 2 
pj 365 kw 102 tw 46 pɕ 27 t ͡ɕf 15 sl 9 db 4 bʑ 2 
vj 344 tʂ 99 kf 46 pt 27 ʑr 15 dɲ 8 tɲ 4 vm 2 
pr 340 ɕt ͡ɕ 94 ɕɲ 46 fʂ 27 ʂf 15 vz 8 pɲ 4 mx 2 
tr 266 ɕl 89 ɕr 44 fɕ 27 vb 15 rv 8 fk 4 ln 2 
sk 257 zb 88 tf 42 vʑ 25 mɲ 15 dl 8 st ͡ɕ 4 kt ͡ɕ 2 
ɡr 249 zɡ 86 mw 42 ft ͡ɕ 25 zd ͡ʑ 14 ʂw 8 xj 3 lɲ 2 
mj 248 vr 86 xl 40 ʂn 24 px 13 d ͡zb 8 ʐv 3 vɲ 1 
sw 227 zr 82 dw 40 ʂm 23 ɕp 13 mn 8 t ͡ɕm 3 ʐb 1 
br 206 zj 78 vʐ 39 dʐ 23 t ͡ʂw 12 t ͡sf 8 rd ͡z 3 wb 1 
kl 196 zv 78 sf 38 ʂt 23 st ͡s 12 t ͡sm 8 ʐɲ 3 wɡ 1 
dr 190 kʲj 75 fl 38 mr 22 zɡʲ 12 lv 8 rj 3 zz 1 

pw 175 kɕ 74 ɡɲ 37 t ͡ʂf 22 ɡʲj 12 ɡn 7 lʐ 3 ʐn 1 
pl 172 bl 73 ʂk 36 dj 20 ft 12 xt ͡s 7 t ͡ʂk 3 pt ͡ɕ 1 

vw 146 fr 67 fs 35 sr 20 xʂ 11 tj 7 t ͡ʂt ͡ɕ 3 km 1 
zw 140 sx 60 ɕf 34 fx 20 tx 11 tk 7 ʂr 3 mʐ 1 
bj 133 fp 59 xf 33 vn 20 ɕm 11 mʂ 7 rʐ 2 d ͡ʐd ͡ʐ 1 
ɡw 121 dv 58 vl 33 ɡd 19 vd 11 kn 6 ɡm 2 vv 1 
kʂ 121 ps 54 xt ͡ɕ 31 ʂl 18 ss 10 bz 6 rt 2 vɡ 1 
zd 119 bw 52 ɡv 29 t ͡ʂt 18 ɡd ͡ʑ 10 sʂ 6 ʑl 2 lj 1 
ɡʐ 118 bʐ 51 ɡl 29 fj 18 sɕ 10 ɡz 5 dn 2     

 
 


