NanoEnergy

ECE 597/697 Special Topics: Energy Transport and Conversion at the Nanoscale
http://blogs.umass.edu/eceng597en-zlatana/

Instructor: Zlatan Aksamija
email: zlatana@engin.umass.edu

Meeting time and place: MWF 12:20 in Elab 306

Office Hours: Tue 10:30am, Fri after class, or by appt
Schedule for the rest of the semester

– HW3 Due Friday Oct. 31st
– HW4 Due Friday Nov. 7th (no Quiz!)
– Last day to turn in homework for credit Nov. 7th
– Midterm Exam distributed Monday Nov. 10th in class (no lecture)
– Midterm due Wed. Nov 12th beginning of class
– Final Project proposal and team members due Friday Nov. 14th (1 page statement of problem, methods, outcomes)
– Reading Assignment Reports Due Monday Nov. 17th (electronic submission preferred).
– Final Project presentations at final exam time Dec. 8th
– Final Reports due Dec. 8th (electronic submission, will accept until Friday Dec. 12th)
Recap so far

• So far we have discussed energy storage (expressed as heat capacity) of a single isolated structure
• First we calculated the energy per state/mode $E(k)$ or $\hbar \omega(k)$
• Next we calculated how many states/modes have that particular energy—the density of states
• We then derived the probability/number of carriers (electrons, phonons, photons) per state—the distribution function
• Then we just multiplied the three together and integrated over the energy variable—energy density $U(T)$
• Finally we looked at how much the energy density changes if we change temperature—heat capacity $C(T) = dU/dT$
Recap so far

<table>
<thead>
<tr>
<th>Property</th>
<th>Electrons</th>
<th>Phonons</th>
<th>Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>(E(k) = \frac{\hbar^2 k^2}{2m^*})</td>
<td>(E(k) = \hbar \omega(k) = \hbar c_s</td>
<td>k</td>
</tr>
<tr>
<td>Density of States</td>
<td>(D(E) = \frac{1}{4\pi^2} \left(\frac{2m^*}{\hbar^2} \right)^{3/2} \sqrt{E - E_0})</td>
<td>(D(\omega) = \frac{N(\omega)}{V d\omega} = \frac{\omega^2}{2\pi^2 c_s^3})</td>
<td>(D(\omega) = \frac{\omega^2}{\pi^2 c_s^3})</td>
</tr>
<tr>
<td>Type/Statistics</td>
<td>Fermions: Fermi Dirac</td>
<td>Bosons: Bose-Einstein</td>
<td>Bosons: Bose-Einstein</td>
</tr>
<tr>
<td>Distribution Function</td>
<td>(f_{FD}(E,T) = \frac{1}{\exp \left(\frac{E - E_F}{k_B T} \right) + 1})</td>
<td>(f_{BE}(E,T) = \frac{1}{\exp \left(\frac{\hbar \omega}{k_B T} \right) - 1})</td>
<td>(f_{BE}(E,T) = \frac{1}{\exp \left(\frac{\hbar \omega}{k_B T} \right) - 1})</td>
</tr>
<tr>
<td>Heat Capacity, Low T</td>
<td>(C_V(T) = \frac{\pi^2}{2} n_e k_B \frac{T}{T_F})</td>
<td>(C_V(T) = k_B \frac{12\pi^4}{15} \left(\frac{N}{V} \right) \left(\frac{T}{T_D} \right)^3)</td>
<td>(C_V(T) = k_B \frac{N}{V})</td>
</tr>
<tr>
<td>High T</td>
<td></td>
<td>Black-body radiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(e_b(T) = \frac{\pi^2 k_B^4}{60\hbar^3 c^2} T^4 = \sigma T^4)</td>
<td></td>
</tr>
</tbody>
</table>
Moving energy around

- Let us now consider a system where two isolated solids are connected by a nanostructure.
- The two solids are assumed to be "reservoirs".
- They maintain a constant temperature T_1 and T_2 and constant density E_{F1} and E_{F2}.
Moving energy around, cont.

- Both “reservoirs” are emitting carriers into the nanostructure.
- We want to compute the rate of energy transfer from each reservoir into the nanostructure – the energy/heat flux $Q_{1,2}$.
- Let’s first consider reservoir 1 on the left; only particles going left to right (positive “x” direction, k_x and $v_x > 0$) contribute.
- The rate at which any given state transfers energy is

$$Q_1(k) = \frac{E(k)v_x(k)}{L}$$

- To get the total we simply multiply by the distribution and sum over states going right:

$$Q_1 = \sum_{k_x > 0} Q_1(k) = \frac{1}{L} \sum_{k_x > 0} f(E, T)E(k)v_x(k)$$
Moving energy around, cont.

- Note that we have not yet specified the type of carrier—they could be electrons, phonons, or even photons.
- Also note that we have neglected to consider the possibility that a carrier never makes it to the other end.
- To account for this possibility, we need to multiply by a probability of transmission $0 < \tau(k) < 1$

\[
Q_1 = \sum_{k_x > 0} Q_1(k) = \frac{1}{L} \sum_{k_x > 0} f(E, T_1) E(k) v_x(k) \tau(k) \]

- The energy flux from the other reservoir will look the same, except with T_2 and only left-moving carriers instead.

\[
Q_2 = \sum_{k_x < 0} Q_2(k) = \frac{1}{L} \sum_{k_x < 0} f(E, T_2) E(k) v_x(-k) \tau(-k) \]
Moving energy around, cont.

- The net energy flux is just the difference between the two terms

\[Q_{tot} = Q_1 - Q_2 = \frac{1}{L} \left[\sum_{k_x > 0} f(E, T_1)E(\vec{k})v_x(\vec{k})\tau(\vec{k}) - \sum_{k_x < 0} f(E, T_2)E(\vec{k})v_x(\vec{k})\tau(\vec{k}) \right] \]

- If \(T_1 = T_2 = T \), we have equilibrium and the net flux must be zero

\[Q_{tot} = \frac{1}{L} \left[\sum_{k_x > 0} f(E, T)E(\vec{k})v_x(\vec{k})\tau(\vec{k}) - \sum_{k_x < 0} f(E, T)E(\vec{k})v_x(\vec{k})\tau(\vec{k}) \right] = 0 \]

- Consequently the two summations (left-going and right-going) have to be exactly the same; otherwise we would have a flux

- Now let’s apply a temperature gradient \(\Delta T \) so that the temperature on the left is \(T + \Delta T \) and the right is \(T \).
Moving energy around, cont.

- The net energy flux is no longer zero

\[Q_{\text{tot}} = \frac{1}{L} \left[\sum_{k_x > 0} f(E, T + \Delta T) E(\vec{k}) v_x(\vec{k}) \tau(\vec{k}) - \sum_{k_x < 0} f(E, T) E(\vec{k}) v_x(\vec{k}) \tau(\vec{k}) \right] \]

- We can group the terms since the summations are the same

\[Q_{\text{tot}} = \frac{1}{L} \sum_{k_x > 0} \left[f(E, T + \Delta T) - f(E, T) \right] E(\vec{k}) v_x(\vec{k}) \tau(\vec{k}) \]

- In the limit of small gradient, we can expand the distribution function into a Taylor series and take the first two terms

\[f(E, T + \Delta T) = f(E, T) + \Delta T \frac{\partial f(E, T)}{\partial T} \]

- Plugging into the above, we can write the conductance as

\[K(T) = \frac{Q_{\text{tot}}}{\Delta T} = \frac{1}{L} \sum_{k_x > 0} \left[f(E, T) + \Delta T \frac{\partial f(E, T)}{\partial T} - f(E, T) \right] E(\vec{k}) v_x(\vec{k}) \tau(\vec{k}) \]
Quantum Conductance

- We simplify the expression by cancelling the ΔT terms

\[
K(T) = \frac{1}{L} \sum_{k_x>0} \frac{\partial f(E,T)}{\partial T} E(\vec{k}) v_x(\vec{k}) \tau(\vec{k}) = \frac{1}{L} \sum_{k_x>0} C(\vec{k},T) v_x(\vec{k}) \tau(\vec{k})
\]

- For phonons and photons, we would replace E with $\hbar \omega$ and use the Bose-Einstein distribution function

- For electrons, we would use the Fermi-Dirac distribution

- However, electrons carry both charge and energy—so far we’ve derived the energy/heat conductance

- The charge conductance would look the same except we replace the $E(k)$ with “e”, the electron charge to get

\[
Q_1 = \sum_{k_x>0} Q_1(k) = e \frac{L}{L} \sum_{k_x>0} f(E - E_{F1}, T_1) v_x(\vec{k}) \tau(\vec{k})
\]
Quantum Conductance

- Likewise, for the current going from right to left, we have

$$Q_2 = \sum_{k_x>0} Q_2(k) = \frac{e}{L} \sum_{k_x>0} f(E - E_{F2}, T_2) v_x \left(\vec{k} \right) \tau \left(\vec{k} \right)$$

- Electrons have both temperature and Fermi level; when both are equal, there is no net current (equilibrium)

- Normally we think of a charge current driven by a voltage gradient: let’s add $e\Delta V$ to the Fermi level so that $E_{F1} = E_F + \Delta V$:

$$Q_{tot} = Q_1 - Q_2 = \frac{e}{L} \sum_{k_x>0} \left[f(E - E_F - e\Delta V, T) - f(E - E_F, T) \right] v_x \left(\vec{k} \right) \tau \left(\vec{k} \right)$$

- Again after expanding $f(E - E_F - \Delta V)$, we get conductance as:

$$G = \frac{Q_{tot}}{\Delta V} = \frac{e^2}{L} \sum_{k_x>0} \left(- \frac{\partial f(E - E_F, T)}{\partial E} \right) v_x \left(\vec{k} \right) \tau \left(\vec{k} \right)$$
Quantum Thermal Conductance-phonons

• Let’s compute the thermal conductance of a 1-d conductor
• Assume, for simplicity, perfect transmission with $\tau=1$
• For phonons, we would replace E with $\hbar\omega$ and use the Bose-Einstein distribution function
 \[
 K(T) = \frac{1}{L} \sum_{k_x>0} \frac{\partial f_{BE}(\hbar\omega,T)}{\partial T} \hbar \omega(k) v_x(k)
 \]
• If the spacing of k’s is small enough, we can replace them by a continuum—then our sum turns into an integral
 \[
 K(T) = \frac{1}{L} \left(\frac{L}{2\pi} \right)^k \int_0^{k_D} \frac{\partial f_{BE}(\hbar\omega,T)}{\partial T} \hbar \omega(k) v_x(k)
 \]
• Finally we recognize that the velocity is just a derivative of ω
 \[
 K(T) = \frac{1}{2\pi} \int_0^{k_D} \frac{\partial f_{BE}(\hbar\omega,T)}{\partial T} \hbar \omega(k) \frac{d\omega}{dk} dk = \frac{1}{2\pi} \int_0^{k_D} \frac{\partial f_{BE}(\hbar\omega,T)}{\partial T} \hbar \omega d\omega
 \]
Quantum Thermal Conductance-phonons

Now we can plug in the derivative of \(f_{BE} \) wrt \(T \) and group terms

\[
K(T) = \frac{1}{2\pi} \int_0^{k_D} \frac{\hbar \omega}{k_B T^2} \frac{\exp(\hbar \omega/k_B T)}{[\exp(\hbar \omega/k_B T) - 1]^2} \hbar \omega d\omega = \frac{k_B}{2\pi} \int_0^{k_D} \left(\frac{\hbar \omega}{k_B T} \right)^2 \frac{\exp(\hbar \omega/k_B T)}{[\exp(\hbar \omega/k_B T) - 1]^2} d\omega
\]

After our standard substitution for the unitless variable “x”

\[
x = \frac{\hbar \omega}{k_B T} \quad dx = \frac{\hbar}{k_B T} d\omega \quad d\omega = \frac{k_B T}{\hbar} dx
\]

We have a familiar integral—take the upper limit to infinity

\[
K(T) = \frac{k_B}{2\pi} \left(\frac{k_B T}{\hbar} \right) \int_0^\infty \frac{x^2}{[\exp(x) - 1]^2} dx = \frac{k_B^2 T}{h} \left(\frac{\pi^2}{3} \right)
\]

The thermal conductance is a universal value per conduction channel, independent of the actual material properties
Quantum Thermal Conductance-phonons

- This universal quantum thermal conductance has been measured/observed experimentally in 2000 (predicted in 1998)
- The quantum thermal conductance $g_0=(9.456 \times 10^{-13} \text{ W/K}^2)T$ is the maximum amount of energy transported by a single "channel"
Quantum Thermal Conductance—electrons

- For comparison, let’s compute the thermal conductance of a 1-d conductor filled with electrons
- For electrons we use the Fermi-Dirac distribution function

$$K(T) = \frac{1}{L} \sum_{k_x > 0} \frac{\partial f_{FD}(E, T)}{\partial T} E(\vec{k}) v_x(\vec{k})$$

- Again we convert our sum into an integral and recognize that $v(k) = \frac{1}{\hbar} dE/dk$

$$K(T) = \frac{1}{L \left(\frac{L}{2\pi} \right)^{k_{max}}} \int_0^{k_{max}} \frac{\partial f_{FD}(\hbar \omega, T)}{\partial T} E(\vec{k}) \frac{1}{\hbar} \frac{dE}{dk} dk$$

- Group terms and plug in the derivative

$$K(T) = \frac{1}{2\pi} \int_0^{k_{max}} \frac{E - E_F}{k_B T^2} \exp \left(\frac{E - E_F}{k_B T} \right) \exp \left(\frac{E - E_F}{k_B T} \right) + 1^2 \frac{EdE}{k_B T^2}$$
Quantum Thermal Conductance—electrons

- We would like to group the terms together into \((E-E_F)/k_B T\)
- Missing a "\(-E_F\)" term—add and subtract the same value

\[
K(T) = \frac{k_B}{2\pi} \int_0^{k_{\text{max}}} \left(\frac{E-E_F}{k_B T} \right)^2 \exp \left(\frac{E-E_F}{k_B T} \right) \left[\exp \left(\frac{E-E_F}{k_B T} \right) + 1 \right] dE + E_F \frac{1}{2\pi T} \int_0^{k_{\text{max}}} \frac{E-E_F}{k_B T} \exp \left(\frac{E-E_F}{k_B T} \right) + 1 \right] dE
\]

- Making the substitution again:
 \[x = \frac{E-E_F}{k_B T}, \quad dx = \frac{dE}{k_B T}, \quad dE = k_B T dx\]

\[
K(T) = \frac{k_B^2 T}{2\pi} \int_{-E_F/k_B T}^{(E_{\text{max}}-E_F)/k_B T} x^2 \frac{\exp(x)}{[\exp(x) + 1]^2} dx + E_F \frac{k_B}{2\pi} \int_{-E_F/k_B T}^{(E_{\text{max}}-E_F)/k_B T} x \frac{\exp(x)}{[\exp(x) + 1]^2} dx
\]

- Note the lower limit depends on \(E_F\) explicitly
- If we assume \(E_F >> k_B T\) and \(E_{\text{max}} >> K_B T\), the limits go to +/−infinity
- However, we need \(E_F > 0\)! Otherwise, our conduction channel would be empty
Quantum Thermal Conductance—electrons

• With both limits going to +/- infinity, the integrals evaluate to constants:

\[
\int_{-\infty}^{\infty} x^2 \frac{\exp(x)}{[\exp(x)+1]^2} \, dx = \frac{\pi^2}{3}
\]

\[
\int_{-\infty}^{\infty} x \frac{\exp(x)}{[\exp(x)+1]^2} \, dx = 0
\]

\[K_e(T) = \frac{\pi^2 k_B^2 T}{3h}\]

• The second term with the Fermi level does not contribute!
• We obtain the same quantum thermal conductance per “channel” for electrons as we do for phonons!
• Both conclusions hinge on \(EF>0\) (or being larger than the lowest energy level, assumed here to be zero)
• Implies that whatever states we have available for conduction, they have to be filled—otherwise we get zero conductance!
Quantum Charge Conductance

- Unlike heat/energy which can be carried by both electrons and phonons, charge is only carried by electrons.
- For electrons, we would use the Fermi-Dirac distribution.
- We derived the quantum conductance simply by replacing energy $E(k)$ with the electron charge “e”
- Then we applied a small potential difference and obtained:

\[
G = \frac{Q_{tot}}{\Delta V} = \frac{e^2}{L} \sum_{k_x>0} \frac{\partial f(E-E_F,T)}{\partial E} v_x(\vec{k}) \tau(\vec{k})
\]

- We want to derive the quantum conductance of a 1-dimensional conductor (single conducting channel).
- Again we convert the sum to an integral and use \(v(k) = (1/\hbar) dE/dk \)

\[
G = \frac{e^2}{L} \left(\frac{L}{2\pi} \right)^{k_{max}} \int_0^{k_{max}} \frac{\partial f_{FD}(E-E_F,T)}{\partial E} \frac{1}{\hbar} \frac{dE}{dk_x} dk_x
\]
Quantum Charge Conductance

• The derivative terms cancel so we end up with an integral over energy

\[
G = \frac{e^2}{h} \int_0^{k_{\text{max}}} \left(- \frac{\partial f_{\text{FD}}(E-E_F, T)}{\partial E} \right) dE = \frac{e^2}{h} \int_0^{k_{\text{max}}} \frac{1}{k_B T} \left[\exp\left(\frac{E - E_F}{k_B T} \right) + 1 \right]^2 dE
\]

• After the usual substitution \(x = (E-E_F)/k_B T \), we have

\[
G = -\frac{e^2}{h} \int_{-E_F/k_B T}^{(E_{\text{max}}-E_F)/k_B T} \frac{\exp(x)}{\left[\exp(x) + 1 \right]^2} dx
\]

• In the \(k_B T \ll E_F \) case, we can let the limits of integration go to \(\infty \)

\[
G_0 = -\frac{e^2}{h} \int_{-\infty}^{\infty} \frac{\exp(x)}{\left[\exp(x) + 1 \right]^2} dx = -\frac{e^2}{h} \left[\frac{1}{\exp(x) + 1} \right]_0^{\infty} = \frac{e^2}{h}
\]
Quantum Charge Conductance

• This value $G_0 = \frac{e^2}{h}$ is the quantum conductance—the maximum amount of conductance obtainable from a perfect 1-d conductor.
• Its inverse, the “quantum resistance” evaluates to $\sim 25k\Omega$!
• Note that electrons can have spin up and spin down so the result is typically quoted with a factor of 2 in front ($2e^2/h$).
• For such a simple answer there should be a simpler derivation!
• Let’s try the uncertainty principle: $\sigma(E)\sigma(t) \geq h$
• The usual definition of conductance is $G = I/\Delta V$ where the current is dQ/dt.
• For a single 1-dimensional conductor, the charge density is simply the electron charge “e” and the transit time is the variance $\sigma(t)$.
• We can write $I = e/\sigma(t)$ and $\Delta V = \sigma(E)/e$.
• Together, $G = I/\Delta V = e/\sigma(t)*e/\sigma(E) = e^2/\left[\sigma(E)\sigma(t)\right] \leq e^2/h$.

Quantum Charge Conductance

- What do the experiments say?

Quantized Conductance of Point Contacts in a Two-Dimensional Electron Gas

B. J. van Wees
Department of Applied Physics, Delft University of Technology, 2628 Cj Delft, The Netherlands

H. van Houten, C. W. J. Beenakker, and J. G. Williamson,
Philips Research Laboratories, 5690 TA Eindhoven, The Netherlands

L. P. Kouwenhoven and D. van der Marel
Department of Applied Physics, Delft University of Technology, 2628 Cj Delft, The Netherlands

and

C. T. Foxon
Philips Research Laboratories, Redhill, Surrey RH1 5HA, United Kingdom
(Received 31 December 1987)

Ballistic point contacts, defined in the two-dimensional electron gas of a GaAs-AlGaAs heterostructure, have been studied in zero magnetic field. The conductance changes in quantized steps of e^2/h when the width, controlled by a gate on top of the heterojunction, is varied. Up to sixteen steps are observed when the point contact is widened from 0 to 360 nm. An explanation is proposed, which assumes quantized transverse resonances in the point-contact regime.

![Graph showing point-contact conductance as a function of gate voltage](image)

FIG. 2. Point-contact conductance as a function of gate voltage, obtained from the data of Fig. 1 after subtraction of the lead resistance. The conductance shows plateaus at multiples of e^2/h.
Quantum Thermo-electric conversion

• What happens when we apply both a temperature difference and a voltage?
• OR can we get a charge current from a temperature difference?
• Let’s try it (we actually already solved this problem!)

\[Q_{\text{tot}} = Q_1 - Q_2 = \frac{e}{L} \sum_{k_x > 0} \left[f(E - E_F, T + \Delta T) - f(E - E_F, T) \right] v_x(k) \tau(k) \]

• Expand into a Taylor series and keep the 2 terms:

\[\frac{Q_{\text{tot}}}{\Delta T} = \frac{e}{L} \sum_{k_x > 0} \frac{\partial f(E - E_F, T)}{\partial T} v_x(k) \tau(k) \]

• After the sum\(\rightarrow\)integral conversion and the group velocity

\[\frac{Q_{\text{tot}}}{\Delta T} = \frac{e}{L} \left(\frac{L}{2\pi} \right)^{k_{\text{max}}} \frac{\partial f_{\text{FD}}(E - E_F, T)}{\partial T} \frac{1}{\hbar} \frac{dE}{dk} dk \]
Quantum Thermo-electric conversion

• Now we plug in the derivative and make the substitution for x

\[
\frac{Q_{tot}}{\Delta T} = \frac{e^{k_{max}}}{h} \int_0^{k_{max}} \frac{\partial f_{FD}(E - E_F, T)}{\partial T} dE = \frac{e^{k_{max}}}{h} \int_0^{k_{max}} \frac{E - E_F}{k_B T^2} \left[\exp \left(\frac{E - E_F}{k_B T} \right) - 1 \right]^2 dE
\]

\[
\frac{Q_{tot}}{\Delta T} = \frac{e^{k_{max}}}{hT} \int_0^{k_{max}} x \left[\exp(x) - 1 \right]^2 dx \Rightarrow 0
\]

• Letting the limits of integration go to infinity tells us that we cannot obtain a thermally driven current!

• The lack of thermo-electric effect is due to the same cause as the \leq sign in the derivation

• In order to couple the temperature and voltage, we need interactions/scattering between electrons and phonons

• Scattering makes the transmission imperfect $\tau<1$